
Clonemator: Composing Spatiotemporal Clones to Create
Interactive Automators in Virtual Reality

Yi-Shuo Lin∗
r10922069@csie.ntu.edu.tw
National Taiwan University

Taipei, Taiwan

Ching-Yi Tsai∗
ching-yi.tsai@hci.csie.ntu.edu.tw

National Taiwan University
Taipei, Taiwan

Lung-Pan Cheng
lung-pan.cheng@hci.csie.ntu.edu.tw

National Taiwan University
Taipei, Taiwan

Figure 1: Clonemator allows a user to clone their avatars in various spatiotemporal configurations and collaborate with them
to achieve complex tasks in virtual reality: (A) a group of clones synchronously follow the user to hammer the tent pegs; (B) a
clone mirrors the user’s movement to help spread or fold the net; (C) a clone is fanning the fire while (D) the user is chopping
food with a group of self-recorded clones helping cook; (E) the user steps on a clone; (F) a giant clone; (G) a body-sign clone;
and (H) a remote clone replaying the logging experience previously performed by the user.

ABSTRACT
Clonemator is a virtual reality (VR) system allowing users to create
their avatar clones and configure them spatially and temporally,
forming automators to accomplish complex tasks. In particular,
clones can (1) freeze at a user’s body pose as static objects, (2)
synchronously mimic the user’s movement, and (3) replay a se-
quence of the user’s actions in a period of time later. Combined
with traditional techniques such as scaling, positional rearrange-
ment, group selection, and duplication, Clonemator enables users to
iteratively develop customized and reusable solutions by breaking
down complex tasks into a sequence of collaborations with clones.
This bypasses implementing dedicated interaction techniques or
scripts while allowing flexible interactions in VR applications. We
demonstrate the flexibility of Clonemator with several examples
and validate its usability and effectiveness through a preliminary
user study. Finally, we discuss the potential of Clonemator in VR
applications such as gaming mechanisms, spatial interaction tech-
niques, and multi-robot control and provide our insights for future
research.
∗These authors contributed equally to this research.

CCS CONCEPTS
• Human-centered computing→ Virtual reality.

KEYWORDS
virtual reality, clone, beyond-real interaction, automator

1 INTRODUCTION
Virtual reality (VR) has gained popularity with the commercializa-
tion of head-mounted displays. Over the years, many researchers
have proposed several interaction techniques to enhance experi-
ences, including the Go-Go technique [24], theWorlds-in-Miniature
technique [29], and portals [12].

In recent years, researchers have started exploring the poten-
tial of augmenting the human body in VR with duplicated body
parts, such as a sixth finger [8], a third arm [5], or supernumerary
hands [16]. Studies even show that extra limbs can improve perfor-
mance [25]. More recently, researchers also have tried to replicate
full bodies in VR, and indicated that it can affect task performance
and reduce physical movements [19].

While each VR technique works well by itself, there is hardly
any chance of combining them to create new solutions to solve



Lin et al.

complex tasks as they are usually dedicated to certain types of jobs.
Technically speaking, it is challenging to integrate all these VR tech-
niques into a single system due to the complexity of development
and unexpected exceptions. Also, once the VR designers decide,
users have little chance to adjust the settings or parameters of these
VR techniques.

In this paper, we look into finding a more general approach that
enables a user to decompose complex tasks into smaller, solvable
problems by combining the users themself. Our work is analo-
gous to previous work on automation by demonstration, such as
Sikuli [35] and SUGILITE [14] that configure automation through
actions within naive users’ understandability, and come up with
an intuitive and enjoyable way to tackle dynamic challenges. We
present Clonemator, a VR system that empowers users to create
clones in VR. Configuring and collaborating with spatiotemporal
clones offers an understandable approach to tackling each decom-
posed problem, as users can utilize solutions they’ve used before.
Clonemator also visually preserves spatiotemporal contexts with
clones, offering a way of visualizing the entire solving procedure.

Figure 1 depicts an overview of a user who uses Clonemator at a
campsite. In the following section, we use this as our example walk-
through to demonstrate how the key components of Clonemator
work.

2 EXAMPLE WALKTHROUGH
At the start of the experience, the user finds himself alone at a
campsite. His goals are to set up camp with the help of Clonemator,
including pitching a tent, preparing food, catching fish and building
a campfire.

As the user walks to the tents, he notices many loose pegs sur-
rounding the tents that need to be hammered. The user grabs a
hammer and spawns clones in front of the pegs using Auto Spawn-
ing (Figure 2A). Clones are then spawned with the same offset from
the corresponding pegs, allowing the user and the clones to ham-
mer the pegs simultaneously (Figure 2B). Note that all clones are
outlined in blue for easy distinction.

Figure 2: (A) When the user hovers on a pegs, other pegs will
also be highlighted. (B) The clones will be spawned based on
the offset between the user and the selected peg. Our system
calculates this offset and applies it to each peg to spawn
the corresponding clone, ensuring that all the clones can
hammer the peg precisely.

Next, the user decides to catch fish for dinner but finds it difficult
to control the fishing net alone. To solve this problem, he uses
Relative Spawning to spawn a clone in front of the handle on the
other side of the net, ensuring that the offsets between the avatars
and the handles are the same so that they can grab the two handles at
the same time. After creating a synchronous clone, the user mirrors
its movement by flipping it along the vertical axis. When the user
moves backward, the clone moves backward, making spreading the
fishing net easier. On the other hand, when the user moves to the
right, the clone moves to the left, allowing them to move in the
same direction since they are facing each other. To rotate the net,
the user mirrors the clone’s movement again to flip it back, allowing
them to move synchronously and rotate in the same direction.

Figure 3: (A) The user spawns a clone usingRelative Spawning,
which ensures that the clone can grab the handle of the other
side (outlined in white) when the user grabs the handle in the
front (outlined in yellow). (B) The user creates a synchronous
clone and mirrors its movement, enabling them to move in
the same direction and catch the fish together.

Once the user catches the fish, he sets the clone to static mode
and performs Direct Spawning to create another clone at the exact
position. The two clones each help hold one handle of the fishing
net. To move the fish and net near the table, the user can group
the two clones first. This allows the user to directly grab one of
the clones and move them together without altering the spatial
relationships between the clones. Then, the user realizes that he
needs to get a slice of beef on top of the van, which is too high to
reach. The user crouches and performs Direct Spawning, leaving
the original body as a clone on the ground. The clone can then
serve as a stationary step stool, allowing the user to step onto it and
reach the beef (Figure 4). Note that in our current implementation,
stepping onto a clone is achieved by teleporting to the clone’s head
since the user’s legs are not tracked.

The user brings the beef to the table and starts cutting it with
a knife but notices that the campfire is almost extinguished. Since
the user prefers not to wave his hands twice, he wants to cut the
beef and fan the campfire at the same time. The user first spawns a
clone near the campfire using Indirect Spawning (Figure 5A) and
switches to it to grab the fan (Figure 5B). The user then switches
back to the original body and grabs the knife from the table. Finally,
the user updates the clone near the campfire to synchronous mode
so that it can mimic the user’s movement (Figure 5C). This allows



Clonemator

Figure 4: (A) The user crouches and performs Direct Spawn-
ing to create a static clone. Note that the figure has been
edited to visualize the avatar’s moving trajectory for easier
understanding. (B) The clone now functions as a step stool,
enabling the user to step onto it and reach the desired object.

the user to cut the beef and fan the campfire simultaneously since
both interactions share similar movements (Figure 5D).

Figure 5: (A) The user spawns a clone at the desired location
using Indirect Spawning. (B) The user switches to the clone
to grab the fan from the ground. (C) The user changes the
clone’s interaction mode from static to synchronous using
a ray. (D) With the assistance of the clone, the user can now
cut the beef while simultaneously fanning the campfire.

Then, the user wants to add ingredients such as apples and
canned food to the boiling soup while keeping it stirred to prevent
burning. By recording himself stirring the pot and applying the
recorded actions to a clone, the user can focus on adding ingredients
while the clone continues to stir the soup (Figure 6).

Figure 6: (A) The user records himself stirring the pot. During
the recording stage, an icon appears in the upper left corner.
(B) The user can preview and select previous recordings using
a user interface inspired by [34]. (C) Once the user applies
the recorded actions to the clone, he can delegate the task of
stirring the pot to it and focus on other tasks such as adding
ingredients.

When the user wants to collect more apples, he constructs a
robotic arm by arranging multiple synchronous clones in a row and
having them grab each other (Figure 7). By adjusting the number
and size of the clones, the user can achieve different control-display
ratios, enabling him to customize the arm’s reach and precision
to suit his needs. The flexibility of the simulated robotic arm can
be further enhanced by altering the interaction modes of specific
clones. For instance, changing parts of clones to static results in
a joint-like movement, allowing the user to bend and twist the
robotic arm at different angles.

Figure 7: (A) The user performsDirect Spawning several times
to form a chain of clones. (B) By having adjacent clones grab
each other, the clones become a robotic arm that enables the
user to reach apples on the tree. (C) The user can duplicate
the robotic arm pattern to reuse it in other scenarios.

Suddenly, a cabin near the campsite catches fire, and the user
must extinguish it quickly. He stacks four clones vertically and sets
up the clones so that the first and third clones move in sync while
the second and fourth clones mirror their movements, forming
a vertical bucket brigade to transfer water to the roof efficiently
(Figure 8).

Figure 8: The user creates synchronous clones and forms a
vertical bucket brigade by mirroring adjacent clones’ move-
ments. As one clone raises its left hand and lowers its right
hand, the adjacent clone mirrors this movement by lowering
its right hand and raising its left hand. It allows a single user
to pass buckets to extinguish a fire efficiently.

After extinguishing the fire, the user decides to relax by danc-
ing. By assigning recorded actions sequentially to multiple clones,
users can delay the clones’ movements and create a phase shift
between them. This allows the user to perform the Thousand-Hand
Bodhisattva Dance with the clones (Figure 9A).



Lin et al.

When the user encounters an intersection in the forest, he leaves
a static clone as a road sign to help him navigate more easily (Fig-
ure 9E). By creating clones that perform different postures, the user
can create personalized gestures that are more intuitive than tradi-
tional flags or icons. In addition, the user can record and replay his
body movements to create even more expressive guides, allowing
him to convey more detailed information.

Finally, the user takes advantage of the unique properties of
clones to create painting in VR. By using a rotoscoping technique
on a clone, the user can easily sketch any desired posture (Fig-
ure 9B). He can also create symmetrical paintings collaboratively
with synchronous clones (Figure 9C, D).

2.1 Summary of the Walkthrough
While we demonstrate the effectiveness of Clonemator within a
camping scenario, it is important to note that all the showcased
spatiotemporal interactions are general and applicable to other
scenarios and tasks as well. To provide a comprehensive overview
of the interactions enabled by Clonemator, we summarize their
taxonomy in Figure 10.

3 CONTRIBUTIONS
The key benefit that Clonemator brings is its capability to maintain
spatial and temporal continuity [27, 30], and thus result in the high
understandability for the users to build functional interactions.
While there have been methods for composing VR interaction tech-
niques, the predominant approach involves employing dedicated
programming languages within a graphical user interface (GUI)
and separately observing the results in 3D spatiotemporal envi-
ronments. This discrepancy results in a discontinuity between the
spatiotemporal context within VR and the process of constructing
interactions (GUI coding). In this paper, we argue that Clonemator
is the interface for maintaining seamless spatiotemporal continuity
for building VR interaction techniques. While every interaction
technique includes users itself and a corresponding input action,
Clonemator empowers users to temporally reuse a previous ac-
tion and spatially configure the users themself (in the form of
clone). By combining these spatial and temporal manipulations,
Clonemator enables users to build complex solutions and to adapt
interaction techniques, all originating from the fundamental com-
ponents of simple demonstrations of themselves, using the most
familiar interaction they know.

In this paper, we make the following contributions:
• We explore the possibilities and potential for interactions be-

tween clones by providing several examples and discussing our
insights.

• We develop a VR system that allows users to create clones with
different interaction modes, including static, synchronous and
replayed. We also integrate several additional techniques such as
duplicate, mirror, and group to offer users flexibility in composing
clones and building their own automators.

• We conduct a preliminary user study to validate the intuitiveness
and effectiveness of the key components of Clonemator.

4 CLONEMATOR
The key design space of Clonemator is spatial and temporal controls
of clones.

In this section, we begin by outlining the essential components
necessary for enabling Clonemator and how we implement them.
Then, we elaborate on how these key components can act as unify-
ing operations for composing other existing interaction techniques
for forming new, dynamic, and reusable automators or interactions.

4.1 Key Component #1: Spatial Manipulations
The core spatial manipulations facilitating Clonemator encompass
three fundamental aspects: (1) Spawning Method and Duplica-
tion for clones, (2) Switching Control among differently located
clones, and (3) Grouping a configured set of clones.

Spawning Method. The fundamental atomic action in Clonema-
tor is cloning the users themselves. In our current implementation,
anticipating that the spawning method would be the most fre-
quently used, we offer four variations of clone spawning. These
four methods essentially represent the same function through dif-
ferent polymorphisms: Direct, Indirect, Auto, and Relative.
• Direct Spawning: allows the user to create a clone at the exact

position and in the same posture as the current avatar. When
triggering Direct Spawning, our system duplicates the current
avatar and smoothly moves the user backward by a customized
offset, simulating the feeling of leaving the original body. The
original body then becomes a clone, facilitating precise spawning.
It is useful when the user wants to preserve the context of his
current interaction, such as when holding a ladle (Figure 6A). In
this case, the clone will continue to hold the ladle while the user
can move away and perform other actions.

• Indirect Spawning: enables users to immediately spawn a clone
at the desired location using a ray. Users can adjust the clone’s
rotation along the vertical axis by pressing the thumbstick to the
left or right.

• Auto Spawning and Relative Spawning: exhibit a higher level of
context awareness. Using Auto Spawning, the user can select an
object and spawn clones in front of other objects of the same kind
while preserving the relative position and rotation offsets. In our
current implementation, we detect objects of the same kind by
searching for objects with the same tag that is manually assigned
beforehand. Relative Spawning can be used when the user wants
to spawn clones in front of arbitrary objects. When selecting a
reference object, Clonemator calculates the offset between the
reference object and the user. Then, as the user selects the next
object, Clonemator spawns a clone based on the position of the
selected object and the calculated offset. Keeping the same offset
between objects ensures that the user can interact with those
objects simultaneously.
When spawning a clone while holding an object using Auto
Spawning or Relative Spawning, the object is also duplicated and
distributed to the clone’s hand since we aim to allow users to
perform the same interactions with their clones (Figure 2B). We
also set the default interaction modes of the clones spawned by
these methods to synchronous.



Clonemator

Figure 9: (A) A group of clones with delayed movements allows the user to perform the Thousand-Hand Bodhisattva Dance.
When painting in VR, the user can (B) rotoscope on a clone with any postures, (C) create symmetrical paintings by mirroring
the clone’s movement, and (D) create symmetrical paintings by arranging the clones’ positions and orientations. (E) The user
can also generate customized and expressive road signs by creating clones with different postures.

Figure 10: The solution space provided by Clonemator and
the corresponding walkthrough examples. Depending on the
distance between the clones and the user, the interactions
between them can be categorized as either (1) direct, (2) semi-
direct, or (3) indirect. In terms of the temporal aspect, the
clones can be (1) static, (2) synchronous, or (3) asynchronous.
These spatial and temporal dimensions together define the
possibilities of Clonemator.

Switch Control. While users can create numerous clones simulta-
neously, human’s ability to manage multiple entities with multiple
perspectives is limited [19]. Consequently, implementing a feature
that enables users to transition between clones becomes impera-
tive. Our current implementation allows users to switch between

clones by selecting the desired clone using a ray. After switching
to a clone’s body, the user can gain first-person control over its
movements, enabling more accurate adjustments and fine-tuning
of the clone’s position and interaction. To minimize potential dis-
orientation after switching, we implement an interpolation method
to smoothly transition the positions and rotations of the user’s
viewpoint between the original avatar and the clone. We also re-
duce the field of view during the transition to mitigate motion
sickness. While this implementation employs one perspective for
the users at the same time, an alternative approach could involve a
multi-perspective system such as OVRlap [26].

Group. Group locks the spatial relationship between multiple
clones. In our current implementation, users can group multiple
clones by selecting them with a ray. Once the clones are grouped,
they will be visually distinguished with the same outline color.
Users can manipulate them by moving, applying interaction modes,
duplicating, and removing them. Grouping serves to maintain the
existing spatial relationships between clones. Without grouping,
every time users wish to reuse a previous automator (i.e. a group
of clones), it would potentially lead to the reconfiguration of the
relationship between them, such as relative positions or rotational
offset.

Duplicate. The duplicate function is indispensable to facilitate the
reuse of previous automators (i.e. a group of clones), which enables
users to reuse complete automators with configured properties. In
our current implementation, users can grab and pull off a single
clone or a group of clones from a distance using a ray to make
a duplication, which preserves the original recorded interactions
or properties of the original automator. Although the interaction
of creating a duplicate through pulling off an avatar is similar
to that in SpaceTime [34], the main difference in Clonemator is
that the duplicated clone can also interact with the virtual world.
Notably, duplicating a single clone is equivalent to spawning one.
Therefore, an alternative implementation of Clonemator involves
retaining only the duplication function, as duplicating is inclusive
of spawning.

4.2 Key Component #2: Temporal
Manipulations

To enable Clonemator, our temporal manipulations offer three in-
teraction modes for clones: (1) Static, (2) Synchronous, and (3)
Replayed.



Lin et al.

Static Mode. In Static Mode, the clone freezes in time and remains
stationary. It is valuable when the user needs a stable platform
or needs help holding objects in place. For example, the user can
hang a lantern on the clone to illuminate a dark forest. This frees
up the user’s hands and allows the user to perform other tasks
such as gathering woods. Additionally, a static clone can serve as a
reference point. For example, the user can leverage a static clone’s
body as a measuring tool for comparing the height of a door when
building a house.While group locks the spatial relationship between
multiple clones, static mode locks the temporal property of a single
clone.

Synchronous Mode. In this mode, the clone follows the user’s
movements precisely, creating a one-to-one replication of the user’s
actions. Users can create a group of synchronous clones to perform
repetitive tasks or collaborate with them synchronously. It is also
useful for activities that require synchronization among multiple
clones, such as passing objects over a long distance using the bucket
brigade technique.

ReplayedMode. Clonemator allows a clone to perform previously
recorded sequences of actions in a loop repeatedly. This allows the
users to record their physical movements and their interaction
events. Users can access a 3D carousel menu that shows previews
of all previous recordings to choose the desired one and apply it
to an existing clone or the users’ own avatar themself. This mode
is useful when the user needs to repeat certain interaction in the
future. One way to conceptualize the replayed mode is as a form
of temporal grouping that captures a series of past user actions
and interactions. When a sequence of movements is recorded and
replayed, the time offset between these movements remains fixed.
Moreover, it allows users to collaborate to achieve more complex
interactions with their past selves. Currently, users can set a clone’s
interaction mode in our implementation by pointing a ray.

These modes represent various temporal behaviors for clones:
Static mode keeps the clone fixed at a single moment, Synchronous
mode allows the clone to perform future actions alongside the user,
and Replayed mode enables the clone to reenact past actions.

4.3 Composing Automators through
Spatiotemporal Manipulation

In this subsection, we explain how Clonemator can create an au-
tomaton that acts as a new interaction technique beyond the sys-
tem’s original set of interactions by combining existing interactions
spatiotemporally in the VR system. As illustrated in Figure 11, let’s
consider a VR environment where the fundamental components of
Clonemator are implemented, along with an additional technique
called remove (which allows the removal of a group or a single
clone).

To establish an automaton enabling a teleportation technique
(where users can instantly appear at a different location), the user
can initiate the recording function in replay mode (temporal ma-
nipulation). They can then spawn a clone in front of themselves,
switch control to the newly created clone (spatial manipulation),
turn around and remove the avatar that has been deactivated, and
finally, return to the original forward orientation. After completing

this sequence of actions, the user will find themselves at a new
location, at which point they can stop the recording.

From that point forward, whenever the user needs to perform
a teleportation, they can trigger these automated recordings from
the replayed 3D carousel menu, applying them to themselves. This
results in a reusable and functional teleportation technique. Notably,
each step falls within the system’s original capabilities, making it
highly understandable, as they consist of basic, straightforward
spatiotemporal operations.

When a system contains a different interaction set, then Clone-
mator may provide the possibility to form a different resulting
solution space. For example, if we take remove out of the afore-
mentioned VR system and add scale function to it (where users are
allowed to resize the avatar and clones), then we can possibly cre-
ate a World-in-Miniature function [29] with synchronous control
between the users and a large giant clone.

5 IMPLEMENTATION
We implement Clonemator using Unity version 2020.3.18f1, running
on an HP VR Backpack G2 computer equipped with a NVIDIA
GeForce RTX 2080 graphics card. The VR content is streamed to a
Meta Quest 2 headset via Quest Link over a USB cable. The display
resolution is 1832 × 1920 per eye, and the refresh rate is set to 72
Hz. The user holds two Meta Quest 2 controllers as input devices.

The tracking data from the headset and controllers are dis-
tributed to both the original avatar and its clones. Specifically, we
map the positions and the rotations of the headset and the con-
trollers to the corresponding joints (i.e., the neck and the wrists)
on a humanoid avatar and use Unity’s built-in inverse kinemat-
ics system to animate the avatar’s full body movements. Hence,
one limitation of our system is that users can only record their
upper body movements and can not control their legs to form more
dynamic poses.

5.1 User Interface
To help users get started faster, we have implemented a 2D menu
that can be toggled by pressing the controller button. The menu
is mounted on the user’s left hand and provides access to all the
commands and functions.

Additionally, Clonemator offers voice command functionality
for experienced users. The voice recognition system is developed
using Unity’s built-in keyword recognizer, which can respond to
pre-defined keywords. The microphone of the headset captures the
voice. Users can initiate a voice command anytime as the micro-
phone is always active. Users can also access a list with all available
voice commands inside the menu. It allows users to seamlessly
control Clonemator faster without breaking their immersion. In
situations where a 2D menu is not feasible, such as when the user’s
hands are fully occupied with other tasks, voice commands become
a valuable alternative.

5.2 Added Interaction Technique
While we have covered the essential functions enabling Clonemator
in Section 4, its true potential lies in its capacity to integrate and
combine existing interactions that were accommodated within the
current virtual world, thereby generating novel, adaptable, and



Clonemator

Figure 11: A teleportation technique can be assembled through the spatiotemporal arrangement of Clonemator with an
additional remove technique. A user can record their sequence of actions, including (A) spawning a clone, (B) switching control
to the newly spawned clone, (C) turning back and remove the original avatar, and (D) returning to the original orientation.
Subsequently, they can easily apply this stored, recorded sequence to themselves whenever they wish to teleport without
redoing each decomposed step. This creates an automated process for achieving teleportation.

understandable solutions. A different collection of these added
interaction techniques may span a different solution space. Here,
we provide an overview of the added interaction techniques we
have incorporated into our current implementation. Note that the
selection of these interaction techniques is for illustrative purposes
and the following user study, the concept of Clonemator allows
VR designers to determine their own set of added interactions for
enabling a different possible solution space for the users to explore.
• Snap: Although Indirect Spawning provides a quick way to spawn

a clone at a distance, it lacks precision in determining the spawn-
ing position. To further ease the user’s effort when positioning
the clone, Clonemator introduces two snapping methods, which
can be toggled using the controller button.
Grid Snapping divides the world into a grid, with each cell having
a length equivalent to the user’s arm length. It ensures that the
spawned clones can interact with each other if they are located
in two adjacent cells. This method is convenient for maintaining
consistent offsets between avatars.
Nearest Object Snapping snaps the clone to the closest object
while maintaining an arm’s length offset. This method is useful
when spawned clones need to interact with a specific object.
Both snapping methods can be customized by using a slider to
adjust the offsets according to different situations.

• Avatar Rotation and Teleportation:We enable users to navigate
easily by rotating their bodies or teleporting using the controller.
Since Clonemator currently synchronizes physical movements,
users can use avatar rotation and teleportation to prevent unin-
tentional movements of synchronous clones. For example, when
users rotate themselves using the controller, the clonewill remain
stationary, enabling them to establish a rotational offset.

• Scale: Users can adjust the size of clones by pressing the thumb-
stick backward and forward during Indirect Spawning or when
grabbing an existing clone. Users can also switch between clones
of different sizes to perform interactions at varying scales [10].

• Mirror: Mirroring allows the user to flip a clone’s movement
horizontally, creating a mirror image of their own actions. For
instance, when the user raises their right hand, the clone will
raise its left hand, and vice versa. It provides intuitive control,
especially when the user and the clone face each other as their
movements are reflected, much like looking into a mirror. Mir-
roring is also helpful for activities that require symmetric move-
ments, such as swinging a long jump rope together or performing
synchronized dance moves.

• Remove: Users can select and remove a clone using a ray. If the
clone is holding an object, the object will dissolve and appear
near the user. The mental model behind this feature is that the
removed clone will merge back with the user. For example, the
user can assign a clone to gather wood and then remove the
clone to obtain the collected wood.

• Undo: Clonemator also provides an Undo feature, which allows
the user to cancel previous spawning commands. It is especially
useful when the user wants to remove multiple clones created by
Auto Spawning at the same time. Our system also allows users
to undo grouping and duplication commands, reducing manual
effort.

6 PRELIMINARY USER STUDY
Since Clonemator can possibly utilize infinite supporting inter-
action techniques to form an even larger solution space, it was
challenging to identify a particular collection of supporting inter-
actions to show its full potential. As the first step to understanding
Clonemator, we conducted a preliminary study whose main evalu-
ation is around Clonemator’s key components only, including user
experience and flexibility in solution-making. To allow participants
to focus on the key components of Clonemator, we utilized the
smaller supporting interaction set employed in our walkthrough
and implementation, and we restricted the replay function to record
only the user’s physical actions.



Lin et al.

6.1 Design, Tasks, and Participants
The study includes 9 tasks in the VR camping scene presented
earlier in Section 2, and is composed of two sessions: a first session
with example solutions and a second session without.

In the first session, participants completed five tasks, including
four specific tasks from the walkthrough in Section 2 (hammering
multiple pegs, catching fish, cooking while adding ingredients, and
fanning the campfire while cutting beef) and a free-exploration task.
Prior to the five tasks, a video tutorial was given, explaining the
tasks’ goal, providing the sample solutions from the walkthrough,
and demonstrating the necessary UI elements and actions. Partici-
pants had to replicate the sample solutions in the VR scene after
viewing the video. The free-exploration task lets participants test
the operation not covered in the first four tasks, such as remove,
duplicate and group, and allowed participants to explore the scene
freely with all operations available. The first session familiarized
participants with the system and provided a general understanding
of Clonemator’s experience.

In the second session, participants had to complete the other
four tasks, including:
• Moving a table that is too heavy for a single person, so the

participants have to collaborate with or utilize multiple clones
• Passing multiple basketballs as fast as possible from a starting

point to a target that is 9 meters away without teleportation
• Fetching a slice of beef at 2.5 meters height from the top of a van
• Fetching an apple at 7.5 meters height from the top of a tree,

where a distinct solution from fetching beef was required.
Participants were only given the task goal and requirement without
any further instructions provided. These tasks are designed for
utilizing more complex clone manipulation, and since participants
had to come up with their own solutions, this session is aimed at
testing not only the user experience but also the richness of the
solutions that Clonemator can support.

We recruited 12 participants (8 male, 4 female) who had no prior
knowledge of Clonemator’s details, aged from 19 to 27 (m= 23.8,
sd=2.4) through word of mouth. 2 had VR experience more than
once aweek, another 3 hadVR experience about once amonth, 1 had
VR experience about once every three months, and the remaining
6 had very rare VR experience (about once a year or less). The
apparatus used for the study is the same as mentioned earlier in
Section 5.

6.2 Solutions Generated by Participants
During the second session of the study, we observed that partici-
pants were able to come up with different solutions for the given
tasks. For example, P6 used a synchronous clone to catch a basket-
ball he threw (Figure 13A), while P5 and P11 recorded themselves
throwing a ball and applied the recording to a clone, catching the
ball at the destination by themselves. P2 successfully built a bucket
brigade made of clones using the Direct Spawning technique and
set their interaction modes to synchronous (Figure 13C). The first
clone grabbed a ball with its right hand and passed it to its left hand,
while the next clone used its right hand to grab the ball held by the
left hand of the previous clone, forming a pipeline to pass multiple
balls efficiently.

For fetching a high object (including fetching beef and fetching
an apple), P4 used Relative Spawning to spawn a clone in front of
the apple by setting the reference object to the gas cylinder next
to her and then switched to the clone to get the apple. P3, P6, P7
and P11 directly threw a clone to the top of the tree and switched
to it. P5 recorded the action of grabbing and lifting objects and
applied it to vertically stacked clones with different phase shifts,
forming an elevator that allowed the clones to pass him to the tree
top (Figure 13B). P8 created a step stool by positioning a static clone
near the camper van and used it as a platform to reach for the beef.

Overall, participants created 5 different solutions for fetching a
high object and 4 different solutions for passing basketballs, which
indicate Clonemator’s flexibility in providing dynamic, adaptable
solutions.

6.2.1 Overall Experience. On “the overall experience of using the
system is enjoyable,” participants reported an average of 6 points
(sd=1.13) on a 7-point Likert scale (1-“strongly disagree”, 7-“strongly
agree” ). Participants responded positively about the experience of
completing tasks with Clonemator, including “It’s pretty cool. It’s
interesting and fun.” [P1], “It’s a fun game.” [P2, P7, P10], “It’s pretty
fun, even though it’s my first time using it.” [P3], “It’s quite fun.
The experience is interesting.” [P5], “You can do many things due to
variability and combinations, so it’s pretty interesting.” [P11].

6.2.2 Understandability and Usefulness. Regarding the system’s
usefulness, participants noted “Even without instructions, one should
be able to figure it [the solution] out.” [P1] and “I can think of a
solution easily.” [P12]. For learning the overall control of the system,
participants added “It is not difficult to learn, there are many things
but all the operations are basic.” [P2]. “Once you’re familiar with what
you can do with the clones, it’s quite simple.” [P11]

Regarding spawning the clones, participants express it’s natural
as “The method of creating clones is quite intuitive.” [P3]. Specifically,
“Out-of-body is convenient andmost intuitive” [P1, P12] ... “because one
can determine the position of their clone by his body.” [P1], and pro-
vides their view on tradeoff between different spawning methods
as “It’s harder to image its result for auto-spawing but it has huge po-
tential for mass deployment.” [P12] In terms of controlling the clones,
“simultaneously waving the wind and cutting foods [using synchro-
nous mode] is intuitive because the movements are consistent.” [P1],
and P3 mentioned her controlling metaphor, by “to think about how
to operate different bodies at the same time, it’s like controlling a
machine remotely.” [P3]

6.2.3 Use Cases and Further Applications. The participants have
also suggested additional features. For example, editing or manag-
ing replayed clones “Replay could benefit from naming, searching,
and categorizing. Also, I hope to extract certain actions during a re-
play sequence” [P7], as well as more dexterous control with “complex
actions such as finger movement.” [P11]

Although we make sure the keyword or notion of automation is
never mentioned in our study instruction, P2 drew a comparison
between Clonemator and such concept, by “It [the system] is like
writing code modules and microservices. Using the switch or replay
to trigger pre-written functions is like a game plugin.” and “similar
to a macro or script but for repeated tasks in VR.”



Clonemator

Figure 12: Study tasks without sample solutions. Participants have to complete four challenges without explicit instructions.
These challenges included: (A) lifting a heavy table, (B) fetching a slice of beef from the top of a van, (C) fetching an apple from
the top of a tree using a solution different from that used for fetching the slice of beef, and (D) passing basketballs across a
distance without teleportation as fast as possible.

Figure 13: Solutions come up by participants: (A) The user throws a ball and catches it with a synchronous clone. (B) The user
replays the lifting movement to multiple clones stacked vertically, forming an elevator. (C) A bucket brigade formed by a chain
of clones with synchronous movement.

Furthermore, participants proposed additional potential applica-
tions of Clonemator, which encompassed “3D modeling in VR” [P1],
“gaming” [P1, P2, P3, P5, P8, P10, P11, P12], and “demonstration or teach-
ing” [P6, P7, P12]. Specifically, P7 suggested that “ [Clonemator] can
be used for teaching and even demonstrate tasks that require collab-
oration or teamwork but by one’s self.” [P7], while participant P2
mentioned the composition of clones “can improve the experience of
games like Story of Seasons, which involves a lot of repeated farming
tasks.”

6.3 Study Summary
The study results indicate that Clonemator provides diverse and
adaptable functionalities for various tasks, and the key operations
of Clonemator deliver a user-friendly and enjoyable experience
with intuitive controls.

7 RELATEDWORK
The presented work draws on several areas of previous research,
including Replicating Movement in the Real World, Beyond-Real
Interaction, and Programming by Demonstration.

7.1 Replicating Movement in the Real World
Previous studies in teleoperation have investigated the potential
of replicating control or movement in real-world scenarios. This
involves remotely controlling one or multiple robots by one single
user. For instance, Glas et al. [7] designed a coordination system
that enables a user to operate four robots at the same time. Re-
searchers have also explored ways of controlling two robotic arms
synchronously or asynchronously through the use of EMG signals
and gaze control [20]. Additionally, in Transfantome [10], users
can control two robots concurrently at different scales by embody-
ing two proxy bodies that represent each robot. Takada et al. [31]
utilized parallel embodiment to allow users to simultaneously op-
erate two robot arms to play ping-pong against two opponents.
These studies demonstrate the potential of duplicating control and
movement in enhancing physical operation.

However, these methods are restricted by real-world hardware
resources, leading to limitations in the number of clones or replica-
tions. In Clonemator, we systematically explore such a concept in
virtual reality environments, allowing users to operate an unlimited
number of clones of varying sizes, timing, and replayability, thereby
fully realizing the potential for movement cloning and replication.



Lin et al.

7.2 Beyond-Real Interaction in VR
VR offers a unique platform for exploring interactions that are im-
possible to experience in the physical world. Such interactions have
been coined as "Beyond-real interaction" [2] by Parastoo et al. Re-
searchers have investigated a variety of beyond-real interactions, in-
cluding dynamically changing arm length for reaching objects [24],
scaling the body for navigation [1], and using spherical proxies to
interact with distant objects [22].

Researchers have also begun exploring the possibility of multi-
embodiment or duplicating body parts in VR. Studies have shown
that users can adapt to the six-digit hand while maintaining a sense
of ownership and agency with it [8]. Similar results can also be
applied to having a third arm [5] and even multiple bodies [19].
Furthermore, users can develop an implicit dual motor adaptation
when switching between two virtual bodies [32].

Beyond the experience of having supernumerary body parts,
researchers have also investigated the resulting changes in per-
formance. For example, it has been shown that users can increase
task efficiency and reduce physical movement by leveraging addi-
tional hands [25] or bodies [26]. Smith et al. have also demonstrated
that users can coordinate two bodies simultaneously and develop
different strategies for handing off a cube [28]. However, while
controlling multiple clones, sharing multiple perspectives (i.e.more
than two) simultaneously could also increase control complexity,
thus adding task completion time [19].

Clonemator is situated within the “duplication” category of
Beyond-Real Interaction’s taxonomy [2]. Compared to previous
work, our research further explores the interaction between the
user and their clones, leveraging the ability to create clones with
various temporal and spatial properties to give users greater control.
This approach builds upon previous research and takes it to the
next level by enabling the possibilities for user-clone interactions.

7.3 Programming by Demonstration
Previous research has investigated Programming-by-Demonstration
(PbD) [15] to enhance the accessibility of end-user programming.
PbD liberates users from the constraints of dedicated programming
languages or scripts by enabling them to create their automated
solutions by demonstrating "an example of what they wanted it to
do" directly to the system [15].

For instance, Sikuli [35] allows users to utilize screen-captured
elements as their script and search input, bypassing the need for
expert knowledge of the parameters or names of the correspond-
ing UI. Additionally, SikuliBot [11] extends the same concept to
physical interfaces by enabling users to take real-world images of
physical buttons or touchscreen positions, and a robotic actuator
automatically operates these physical UI elements based on the
users’ arrangement of the images. In addition to images or screen-
shots, recording and replaying a sequence of users’ interactions
further enhances the automation process with PbD. For instance,
Ringer [3] allows non-coders to record a sequence of their web-
site interaction, which generates a script that interacts with the
page as demonstrated by the users. Similarly, Mau’es et al. [18]
enables users to perform a smartphone task that they would like
to automate, and their system generates the automation based on
these latest actions. Moreover, SUGILITE [14] combines voice input

and app demonstration to enhance the automation pipeline for
non-programmers.

While these approaches have lowered the barrier to automation
for desktop, web, and mobile applications, Clonemator explores this
concept in the context of virtual reality. Specifically, Clonemator
builds upon the PbD concept for task automation by allowing users
to record and replay their VR demonstration, which can be rear-
ranged, distributed, and composited with each other in the form of
clones in VR. Users can create and control clones to perform spe-
cific actions as if they were controlling their own bodies, without
requiring dedicated crafting of different interaction techniques for
different situations.

8 DISCUSSION AND FUTUREWORK
8.1 Snapping and Alignment
Composing multiple clones to create custom automators often re-
quires precise alignment of the clones. Clonemator addresses this
by offering several alignment techniques, such as Auto Spawning
and Relative Spawning, as well as Grid Snapping and Nearest Object
Snapping modes when spawning a clone.

While these techniques can handle situations in our case, more
advanced techniques are necessary for complex scenarios, such as
when the user wants to spawn a clone in front of an object that is
significantly smaller than the object in front of the user since the
required offsets may not be the same. This can lead to misalignment,
making it difficult for the clone to interact with the smaller object
simultaneously.

8.2 Cloning with objects in hands vs. without
One confusion we observed during the study and our own imple-
mentation is whether the object held in hand should be cloned
when spawning a user’s clone. If not, then interactions such as
hammering multiple pegs simultaneously can’t be easily achieved.
However, if we clone the held objects every time, excessive objects
would be produced unnecessarily.

We believe this problem essentially pertains to defining the
boundary of a clone’s ownership. Since we currently see the need
for both alternatives, we suggest that future systems allow users
to adjust what they want to include in the cloning and what they
don’t. While our implementation currently achieves this by setting
different object cloning modes for different spawning methods (i.e.
while auto and relative spawn clone the object in hands, the rest
don’t), we see a complete decoupling between object cloning and
spawning method as a better future option.

8.3 Further Supporting Techniques
With only the key components of Clonemator, the system can
possibly play with any interaction techniques and enable a bigger
solution space. However, we have identified several supporting
interaction techniques closely related to the concept of Clonemator
itself, which we believe is not necessary to enable Clonemator
but will improve the automation process. We list these interaction
features here to inspire future research on the system.
• Temporal Transformation: While we have incorporated in-

teraction techniques about spatial transformations (e.g. scaling a



Clonemator

clone or group) in our current implementation, the comparable
future supporting technique could be temporal editing of clones.
This could potentially involve trimming unnecessary replayed
segments, extracting replayed clips to create new sequences, and
implementing fast-forward or rewind functionalities within a
replay.

• Visualization and Mesh Control: While we currently present
the user avatar and clones with full-body mesh, visualizing only
the upper body of the avatar or even just the hands could reduce
the visual burden when many automators are working at the
same time (e.g. utilizing multiple clones to create a pantograph
mechanism for achieving adjusted CD gain in fetching). Addi-
tionally, allowing users to change the coloring of clones would
make it easier for them to manage them using color labels sys-
tematically. Moreover, changing the mesh or texture of a clone
could enable a customized form of automators. For instance,
when using a string of static clones to build a row of fences,
giving them a wooden texture or simplified mesh would be more
realistic and aesthetically pleasing.

• Shortcut Bindings: In our existing implementation, to reuse a
previous recording, users must initially access a carousel menu.
To duplicate a group of clones, they need to target an existing
group and execute the duplication.
While this design sufficiently facilitates automated tasks, an
enhanced interaction could enable users to bind the reuse or
duplication of specific actions or groups to a button shortcut.
This would prove especially convenient for frequently used in-
teraction techniques.

8.4 Merging a Clone’s Experience
The Shadow Clone Technique heavily inspires us in the popular
anime, Naruto. One of the key features is the user’s ability to gain
the clones’ experiences when they disperse. In Clonemator, we
have implemented a similar feature where a memory orb, inspired
by the film Inside Out, appears in front of the user upon removing
a clone. By grabbing the memory orb and placing it into his chest,
the user can relive the clone’s experience by watching a replay
captured by the clone’s eye (Figure 14).

However, a question remains: can the user experience a clone’s
sensations other than sight? For example, imagine removing a clone
that has been stirring a pot for half an hour and instantly feeling
the soreness in their arm. This presents an interesting design space
for future exploration.

8.5 Beyond Problem Solving
Although, for our VR study, we implemented and demonstrated
Clonemator with its problem-solving capacity, we believe the work
has further potential to be utilized in other areas.

To begin with such extension, we believe Clonemator can serve
greatly for social scenarios such as VRChat [33] or BeanVR [4].
With Clonemator, in social platforms, players can compose versa-
tile body motions with single or multiple replayed clones, forming
groups of clones with intriguing postures as signs, or deploying
multiple dynamic dancing clones as social gestures such as Figure 9.
This extension also hints at the potential for Clonemator to func-
tion as a creative system where individual users can harness the

cloning operations to generate diverse artistic expressions, includ-
ing forms that traditionally may require multiple users, such as
movies (multiple actors/ actress) and dances (multiple dancers).

Another prospective area is a multi-robot system. While our
system is conceptually similar to the "Distributed Autonomous Sys-
tem" [21] that utilizes multiple independent robot units to work
coordinately and achieve amore complex task, it has the potential to
serve as a control mechanism for future swarm user interfaces [13]
or multiple robotic arms. By leveraging the flexibility of Clonema-
tor, users can control multiple elements as intuitively as controlling
their clones. For example, when a user spawns a clone, a corre-
sponding robot will appear in the real world at the same position. It
can also facilitate users in switching between multiple robots [10]
or recording and replaying actions for teleoperation [17].

Besides, previous video games have already leveraged different
aspects of clone-based mechanisms to create novel gaming experi-
ences. For example, Quantum League [6] and Time Rifters [9] allow
players to team up with their past selves in a shooting game. More
recently, The Last Clockwinder [23] enables players to create clones
that replay their actions and construct a pipeline to maximize the
resource harvesting throughput. While Clonemator systematically
extends the possibilities of interactions between clones by provid-
ing multiple interaction modes and showcasing how they can be
combined with supporting techniques for even more complicated
tasks, we believe our work will inspire game designers to explore
and develop more engaging and innovative gaming mechanisms.

9 CONCLUSION
We have presented Clonemator, a VR system that allows a user to
create and collaborate with clones to accomplish complex tasks.
We have demonstrated the potential of Clonemator by showcasing
concrete examples based on our systematic exploration of spawn-
ing clones, clones’ properties, and interactions with traditional
techniques. We also have shown from our preliminary study that
participants were able to intuitively, creatively, and also enjoyably
use Clonemator. With Clonemator, we see the user’s avatar could
be the generic automator waiting to be dispatched.

ACKNOWLEDGMENTS
REFERENCES
[1] Parastoo Abtahi, Mar Gonzalez-Franco, Eyal Ofek, and Anthony Steed. 2019.

I’m a Giant: Walking in Large Virtual Environments at High Speed Gains. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300752

[2] Parastoo Abtahi, Sidney Q. Hough, James A. Landay, and Sean Follmer. 2022.
Beyond Being Real: A Sensorimotor Control Perspective on Interactions in
Virtual Reality. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (NewOrleans, LA, USA) (CHI ’22). Association for Computing
Machinery, New York, NY, USA, Article 358, 17 pages. https://doi.org/10.1145/
3491102.3517706

[3] Shaon Barman, Sarah Chasins, Rastislav Bodik, and Sumit Gulwani. 2016. Ringer:
Web Automation by Demonstration. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Amsterdam, Netherlands) (OOPSLA 2016). Association for
Computing Machinery, New York, NY, USA, 748–764. https://doi.org/10.1145/
2983990.2984020

[4] BeanVR. 2017. BeanVR. https://store.steampowered.com/app/638920/
BeanVRThe_Social_VR_APP/

[5] Adam Drogemuller, Adrien Verhulst, Benjamin Volmer, Bruce H. Thomas,
Masahiko Inami, and Maki Sugimoto. 2019. Remapping a Third Arm in Virtual

https://doi.org/10.1145/3290605.3300752
https://doi.org/10.1145/3491102.3517706
https://doi.org/10.1145/3491102.3517706
https://doi.org/10.1145/2983990.2984020
https://doi.org/10.1145/2983990.2984020
https://store.steampowered.com/app/638920/BeanVRThe_Social_VR_APP/
https://store.steampowered.com/app/638920/BeanVRThe_Social_VR_APP/


Lin et al.

Figure 14: A proof-of-concept feature allowing users to relive a clone’s experience: (A) The user removes a clone and (B)-(C) a
memory orb appears. (D) The user places the memory orb into his chest and (E) experiences the clone’s memory.

Reality. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
898–899. https://doi.org/10.1109/VR.2019.8798197

[6] Nimble Giant Entertainment. 2021. Quantum League. https://store.
steampowered.com/app/651150/Quantum_League/.

[7] Dylan F. Glas, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. 2012.
Teleoperation of Multiple Social Robots. IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans 42, 3 (2012), 530–544. https:
//doi.org/10.1109/TSMCA.2011.2164243

[8] Ludovic Hoyet, Ferran Argelaguet, Corentin Nicole, and Anatole Lécuyer. 2016.
“Wow! I Have Six Fingers!”: Would You Accept Structural Changes of Your Hand
in VR? Frontiers in Robotics and AI 3 (2016). https://doi.org/10.3389/frobt.2016.
00027

[9] Proton Studio Inc. 2014. Time Rifters. https://store.steampowered.com/app/
270010/Time_Rifters/.

[10] Atsushi Izumihara, Tomoya Sasaki, Masahiro Ogino, Reona Takamura, and
Masahiko Inami. 2019. Transfantome: Transformation into Bodies of Various
Scale and Structure in Multiple Spaces. In ACM SIGGRAPH 2019 Emerging Tech-
nologies (Los Angeles, California) (SIGGRAPH ’19). Association for Computing
Machinery, New York, NY, USA, Article 27, 2 pages. https://doi.org/10.1145/
3305367.3327980

[11] Jeeeun Kim, Mike Kasper, Tom Yeh, and Nikolaus Correll. 2014. SikuliBot:
Automating Physical Interface Using Images. In Adjunct Proceedings of the 27th
Annual ACM Symposium on User Interface Software and Technology (Honolulu,
Hawaii, USA) (UIST ’14 Adjunct). Association for Computing Machinery, New
York, NY, USA, 53–54. https://doi.org/10.1145/2658779.2659110

[12] Ioannis Kotziampasis, Nathan Sidwell, and Alan Chalmers. 2003. Portals: Increas-
ing Visibility in Virtual Worlds. In Proceedings of the 19th Spring Conference on
Computer Graphics (Budmerice, Slovakia) (SCCG ’03). Association for Computing
Machinery, New York, NY, USA, 257–261. https://doi.org/10.1145/984952.984995

[13] Mathieu Le Goc, Lawrence H. Kim, Ali Parsaei, Jean-Daniel Fekete, Pierre Drag-
icevic, and Sean Follmer. 2016. Zooids: Building Blocks for Swarm User Interfaces.
In Proceedings of the 29th Annual Symposium on User Interface Software and Tech-
nology (Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New
York, NY, USA, 97–109. https://doi.org/10.1145/2984511.2984547

[14] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating
Multimodal Smartphone Automation by Demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado,
USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA,
6038–6049. https://doi.org/10.1145/3025453.3025483

[15] Henry Lieberman. 2001. Your wish is my command: Programming by example.
Morgan Kaufmann.

[16] Paul Lubos, Gerd Bruder, and Frank Steinicke. 2014. Are 4 Hands Better than 2?
Bimanual Interaction for Quadmanual User Interfaces. In Proceedings of the 2nd
ACM Symposium on Spatial User Interaction (Honolulu, Hawaii, USA) (SUI ’14).
Association for Computing Machinery, New York, NY, USA, 123–126. https:
//doi.org/10.1145/2659766.2659782

[17] Karthik Mahadevan, Yan Chen, Maya Cakmak, Anthony Tang, and Tovi Gross-
man. 2022. Mimic: In-Situ Recording and Re-Use of Demonstrations to Sup-
port Robot Teleoperation. In Proceedings of the 35th Annual ACM Symposium
on User Interface Software and Technology (Bend, OR, USA) (UIST ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 40, 13 pages.
https://doi.org/10.1145/3526113.3545639

[18] Rodrigo de A. Maués and Simone Diniz Junqueira Barbosa. 2013. Keep Doing
What i Just Did: Automating Smartphones byDemonstration. In Proceedings of the
15th International Conference on Human-Computer Interaction with Mobile Devices
and Services (Munich, Germany) (MobileHCI ’13). Association for Computing Ma-
chinery, New York, NY, USA, 295–303. https://doi.org/10.1145/2493190.2493216

[19] Reiji Miura, Shunichi Kasahara, Michiteru Kitazaki, Adrien Verhulst, Masahiko
Inami, and Maki Sugimoto. 2021. MultiSoma: Distributed Embodiment with
Synchronized Behavior and Perception. In Proceedings of the Augmented Hu-
mans International Conference 2021 (Rovaniemi, Finland) (AHs ’21). Association
for Computing Machinery, New York, NY, USA, 1–9. https://doi.org/10.1145/
3458709.3458878

[20] Yukiya Nakanishi, Masaaki Fukuoka, Shunichi Kasahara, and Maki Sugimoto.
2022. Synchronous and Asynchronous Manipulation Switching of Multiple
Robotic Embodiment Using EMG and Eye Gaze. In Proceedings of the Aug-
mented Humans International Conference 2022 (Kashiwa, Chiba, Japan) (AHs
’22). Association for Computing Machinery, New York, NY, USA, 94–103. https:
//doi.org/10.1145/3519391.3522753

[21] Jun Ota. 2006. Multi-agent robot systems as distributed autonomous systems.
Advanced Engineering Informatics 20, 1 (2006), 59–70. https://doi.org/10.1016/j.
aei.2005.06.002

[22] Henning Pohl, Klemen Lilija, Jess McIntosh, and Kasper Hornbæk. 2021. Poros:
Configurable Proxies for Distant Interactions in VR. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
’21). Association for Computing Machinery, New York, NY, USA, Article 532,
12 pages. https://doi.org/10.1145/3411764.3445685

[23] Pontoco. 2022. The Last Clockwinder. https://www.oculus.com/experiences/
quest/4837365566303714.

[24] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. 1996.
The Go-Go Interaction Technique: Non-Linear Mapping for Direct Manipulation
in VR. In Proceedings of the 9th Annual ACM Symposium on User Interface Software
and Technology (Seattle, Washington, USA) (UIST ’96). Association for Computing
Machinery, New York, NY, USA, 79–80. https://doi.org/10.1145/237091.237102

[25] Jonas Schjerlund, Kasper Hornbæk, and Joanna Bergström. 2021. Ninja Hands:
Using Many Hands to Improve Target Selection in VR. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
’21). Association for Computing Machinery, New York, NY, USA, Article 130,
14 pages. https://doi.org/10.1145/3411764.3445759

[26] Jonas Schjerlund, Kasper Hornbæk, and Joanna Bergström. 2022. OVRlap: Per-
ceiving Multiple Locations Simultaneously to Improve Interaction in VR. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New
York, NY, USA, Article 355, 13 pages. https://doi.org/10.1145/3491102.3501873

[27] Anne Schlottmann. 1999. Seeing it happen and knowing how it works: how
children understand the relation between perceptual causality and underlying
mechanism. Developmental psychology 35, 1 (1999), 303.

[28] James Smith, Xinyun Cao, Adolfo G. Ramirez-Aristizabal, and Bjoern Hartmann.
2023. Dual Body Bimanual Coordination in Immersive Environments. In Pro-
ceedings of the 2023 ACM Designing Interactive Systems Conference (Pittsburgh,
PA, USA) (DIS ’23). Association for Computing Machinery, New York, NY, USA,
230–243. https://doi.org/10.1145/3563657.3596082

[29] Richard Stoakley, Matthew J. Conway, and Randy Pausch. 1995. Virtual Reality on
a WIM: Interactive Worlds in Miniature. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’95). ACM
Press/Addison-Wesley Publishing Co., USA, 265–272. https://doi.org/10.1145/
223904.223938

[30] Benjamin Straube and Anjan Chatterjee. 2010. Space and time in perceptual
causality. Frontiers in Human Neuroscience 4 (2010). https://doi.org/10.3389/
fnhum.2010.00028

[31] Kazuma Takada, Midori Kawaguchi, Akira Uehara, Yukiya Nakanishi, Mark
Armstrong, Adrien Verhulst, Kouta Minamizawa, and Shunichi Kasahara. 2022.
Parallel Ping-Pong: Exploring Parallel Embodiment through Multiple Bodies by
a Single User. In Proceedings of the Augmented Humans International Conference

https://doi.org/10.1109/VR.2019.8798197
https://store.steampowered.com/app/651150/Quantum_League/
https://store.steampowered.com/app/651150/Quantum_League/
https://doi.org/10.1109/TSMCA.2011.2164243
https://doi.org/10.1109/TSMCA.2011.2164243
https://doi.org/10.3389/frobt.2016.00027
https://doi.org/10.3389/frobt.2016.00027
https://store.steampowered.com/app/270010/Time_Rifters/
https://store.steampowered.com/app/270010/Time_Rifters/
https://doi.org/10.1145/3305367.3327980
https://doi.org/10.1145/3305367.3327980
https://doi.org/10.1145/2658779.2659110
https://doi.org/10.1145/984952.984995
https://doi.org/10.1145/2984511.2984547
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/2659766.2659782
https://doi.org/10.1145/2659766.2659782
https://doi.org/10.1145/3526113.3545639
https://doi.org/10.1145/2493190.2493216
https://doi.org/10.1145/3458709.3458878
https://doi.org/10.1145/3458709.3458878
https://doi.org/10.1145/3519391.3522753
https://doi.org/10.1145/3519391.3522753
https://doi.org/10.1016/j.aei.2005.06.002
https://doi.org/10.1016/j.aei.2005.06.002
https://doi.org/10.1145/3411764.3445685
https://www.oculus.com/experiences/quest/4837365566303714
https://www.oculus.com/experiences/quest/4837365566303714
https://doi.org/10.1145/237091.237102
https://doi.org/10.1145/3411764.3445759
https://doi.org/10.1145/3491102.3501873
https://doi.org/10.1145/3563657.3596082
https://doi.org/10.1145/223904.223938
https://doi.org/10.1145/223904.223938
https://doi.org/10.3389/fnhum.2010.00028
https://doi.org/10.3389/fnhum.2010.00028


Clonemator

2022 (Kashiwa, Chiba, Japan) (AHs ’22). Association for Computing Machinery,
New York, NY, USA, 121–130. https://doi.org/10.1145/3519391.3519408

[32] Adrien Verhulst, Yasuko Namikawa, and Shunlchl Kasahara. 2022. Parallel
Adaptation: Switching between Two Virtual Bodies with Different Perspectives
Enables Dual Motor Adaptation. In 2022 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR). 169–177. https://doi.org/10.1109/ISMAR55827.
2022.00031

[33] VRChat. 2014. VRChat. https://hello.vrchat.com/
[34] Haijun Xia, Sebastian Herscher, Ken Perlin, and Daniel Wigdor. 2018. Space-

time: Enabling Fluid Individual and Collaborative Editing in Virtual Reality. In

Proceedings of the 31st Annual ACM Symposium on User Interface Software and
Technology (Berlin, Germany) (UIST ’18). Association for Computing Machinery,
New York, NY, USA, 853–866. https://doi.org/10.1145/3242587.3242597

[35] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli: Using GUI
Screenshots for Search and Automation. In Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology (Victoria, BC, Canada)
(UIST ’09). Association for Computing Machinery, New York, NY, USA, 183–192.
https://doi.org/10.1145/1622176.1622213

https://doi.org/10.1145/3519391.3519408
https://doi.org/10.1109/ISMAR55827.2022.00031
https://doi.org/10.1109/ISMAR55827.2022.00031
https://hello.vrchat.com/
https://doi.org/10.1145/3242587.3242597
https://doi.org/10.1145/1622176.1622213

	Abstract
	1 Introduction
	2 Example Walkthrough
	2.1 Summary of the Walkthrough

	3 Contributions
	4 Clonemator
	4.1 Key Component #1: Spatial Manipulations
	4.2 Key Component #2: Temporal Manipulations
	4.3 Composing Automators through Spatiotemporal Manipulation

	5 Implementation
	5.1 User Interface
	5.2 Added Interaction Technique

	6 Preliminary User Study
	6.1 Design, Tasks, and Participants
	6.2 Solutions Generated by Participants
	6.3 Study Summary

	7 Related Work
	7.1 Replicating Movement in the Real World
	7.2 Beyond-Real Interaction in VR
	7.3 Programming by Demonstration

	8 Discussion and Future Work
	8.1 Snapping and Alignment
	8.2 Cloning with objects in hands vs. without
	8.3 Further Supporting Techniques
	8.4 Merging a Clone's Experience
	8.5 Beyond Problem Solving

	9 Conclusion
	Acknowledgments
	References

