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ABSTRACT
Strength training improves overall health, well-being, physi-
cal appearance, and sports performance.There are four major
factors that affect training efficacy in a training session: ex-
ercise type, number of repetitions, movement velocity, and
workload. Prior research has used wearable sensors to detect
exercise type, number of repetitions, and movement veloc-
ity while training. However, detecting workload remains
constrained to instrumented exercise equipment, such as
smart exercise machines or RFID-tagged free weights.This
paper presents MuscleSense, an approach that estimates exer-
cise workload by using wearable Surface Electromyography
(sEMG) sensors and regression analysis. We evaluated the ac-
curacy of several regression models and the effects of sensor
placement through a 20-person user study. Results showed
that MuscleSense achieved an accuracy of 0.68kg (root mean
square error, RMSE) in sensing workload using both forearm
and arm sensors and support vector regression (SVR).
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Figure 1: MuscleSense senses exercise weights using wear-
able sEMG sensors. The chart on the right shows the signals
from sEMG sensors on the upper arm, from Channel 1 to
Channel 8.
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1 INTRODUCTION
Strength training improves overall health, well-being, physi-
cal appearance, and sports performance. The World Health
Organization (WHO) specifically recommends that "muscle-
strengthening activities should be done involving major muscle
groups on 2 or more days a week" in order to improve cardio-
respiratory and muscular fitness, bone health, and to reduce
the risk of depression [35].
There are four major factors that affect training efficacy

in a training session: exercise type, number of repetitions,
movement velocity, and workload. Prior researchers have
used sensors to track the type of exercise [24, 32, 39], number
of repetitions [10], and movement velocity [27, 33, 34].
Workload sensing is essential to strength train because

progressive overload, a gradual increase of stress placed upon
our body during training, is fundamental to maintaining and
advancing training goals and to avoid over-training [25].
However, detecting workload remains constrained to instru-
mented exercise equipment such as smart exercise machines
and RFID-tagged free weights [16].
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This paper explores a new, wearable approach to workload
sensing. By sensing the user instead of exercise equipment,
it works across all types exercises and exercise equipment,
including machines, free weights, body-weight exercises [20]
(e.g push-ups, street workout [41], and TRX [44]), and resis-
tance bands [3] that are elastic and provides variable work-
load.
We present MuscleSense, an approach that uses wear-

able surface electromyography (sEMG) sensors and machine
learning to sense workload while training. sEMG measures
nerve impulse during muscle contraction and is related to
the intensity of contraction. Our prototype consists of two
8-channel wearable sEMG sensors mounted on a user’s arm
and forearm. Sensor readings are streamed over Bluetooth
and regression models are used to estimate the workload in
real-time. We conducted a 20-person user study to compare
the accuracy of 4 regression methods: 1) support vector re-
gression with linear kernel, 2) random forest regression, 3)
extra tree regression, and 4) multi-layer perceptron regres-
sion with lbfgs solver, and to evaluate the effects of multiple
sensor locations and fatigue.

Our contributions are as follows:

• We proposed a machine learning approach that uses
wearable sEMG sensors to sense workload using per-
sonalized regression models.

• We evaluated the effects of sensor placement, showing
that using sensors from multiple locations improves
accuracy.

• We compared the accuracy of 4 regression models,
and showed that support vector regression with linear
kernel achieved RMSE of 0.68kg for training data (1kg
interval) using sensors on both arm and forearm. The
accuracy is within the interval of weights of machines
and free weights which normally range from 5 lbs
(2.26 kg) to 2.5 kg[1, 29], making it usable in real world
strength training scenarios.

2 RELATEDWORK
Our work is closely related to 1) training assisting systems
and 2) surface electromyography (sEMG).

Training assisting system
Several training guidelines [13, 17, 40] have been proposed
to emphasize the importance of overloading and progressive
overloading of program variables targeting certain parts of
the body. The variables include training intensity (workload),
training volume (number of sets and repetitions), exercise
selected (the type of exercise), rest interval between each
set, training frequency and velocity of contraction (move-
ment velocity) [26]. Rest interval usually affect by exercise
selected whereas training frequency does not change in a

training session, while the others often change. Therefore
it is essential to note down the type of exercise, number of
sets and repetitions, movement velocity, and workload.

There have been a great number of studies that employ dif-
ferent types of sensors, including inertia sensors [27, 33, 34],
RFID readers [11, 16], GPS [38] to assist exercise. Some of
them have been deployed on smartphones [32, 39] to identify
the type of exercise. Chang et al. [10] used two accelerome-
ters at the user’s hand and waist to recognize exercise type
and count repetitions of free weight exercises, while Khu-
rana et al [24] used a camera at the gym to detect, recognize
and track simultaneous exercises. Sports companies such as
Nike, Under Armour and Garmin, have introduced their own
fitness mobile phone applications to track user’s training
activities.

Tonal [42] is a fitness system that combines training equip-
ment and guidance, tracks full-body workout but limits the
type of exercises and is expensive. Interferi [22] could track
lifted weights of 0, 6, 9, 12, 15 lbs from acoustic interferome-
try at a fixed posture. The tracking of workload or training
weights used is very important as it associates with training
intensity [19]. MuscleSense supports weight sensing using
a different approach, and also takes into account the fatigue
emerged during a training session.

Surface Electromyography and Force
Surface Electromyography (sEMG) is a technique for collect-
ing the electric signal from muscles using electrodes on the
skin. In previous works [45], it is stated that EMG signals
will still be produced regardless of direction and sense of
strength. Hence, predicting the force of different exercise is
indeed possible, even in isometric exercises.
Becker et al. [5] used a regression model to estimate the

force, as the mean of absolute values over all EMG channels
has a high correlation to real force values. Choi et al. [12]
pointed out that multiple muscles have non-linearity with
the force instead and sEMG is significantly dependent on
an individual’s neuromuscular factors. There are also a few
works that estimate hand or finger forces using artificial
neural networks (ANN) [2, 31], suggesting that ANN is suf-
ficient to estimate force from sEMG signals. We adopted
their methods, sensing training workload using sEMG signal
through machine learning models. We tried various mod-
els to investigate which model perform the best under our
approach.
Generally, EMG amplitude and spectrum is affected by

fatigue and the generation of muscular force [28]. EMG sig-
nal median frequency would decrease and the signal power
spectrum would shift toward lower frequencies while fa-
tigue [14]. The change in intramuscular pH value would
alter conduction velocity thus changing the amplitude of
EMG signal [6, 7]. As mentioned, the EMG signal is also



affected by a decreased capacity for physical work (gener-
ation of force) during fatigue [4]. The actual influence of
fatigue while measuring force using sEMG signal remains
unexplored, our work intends to also examine how fatigue
would affect workload sensing, as muscle fatigue normally
happens in strength training.

Body Sensor(s) Data Prediction
Body sensor data are widely used in predicting daily activ-
ities. Truong et al. [43] introduced CapBand, an ultra-low
power capacitive sensing wearable armband to detect small
skin deformations to predict 15 hand gestures. Tomo [46],
a low-cost system using Electrical Impedance Tomography
(EIT) could read cross-sectional impedances between elec-
trodes on wrist or arm skin to predict user’s hand gesture.
Fan el al. [18] applied support vector machine on forearm
electromyography data from different forearm muscular ac-
tivity while grasping objects to predict 15 different objects.
Prior research shows that body sensor data, in particular

sensors at wrist and arm are useful and could be utilized to
predict various activities at a comparatively low cost.
Our method to recognize workload through surface elec-

tromyography (sEMG) from wearable armband could be ap-
plied to both free weight exercise and machines.

3 PHYSIOLOGY OF MUSCLE CONTRACTION
To choose a good training feature for our approach, we did
some background research on the physiology of muscle con-
traction.
A single muscle cell in muscle tissue contains lots of my-

ofibrils. Each myofibril is made of many sarcomeres attached
end-to-end and bundled together. Sarcomeres are the mini-
mum muscle contraction units, concist of two types of my-
ofilaments, which are actin filament and myosin filament.
The contraction of the muscle is a decrease in the gap be-
tween these two types of myofilaments. There are three main
substances required in the contraction process: 1) the pres-
ence of nerve impulse, which could trigger the beginning of
a contraction 2) Ca2+ ion, which reveals the myosin-binding
sites on actin so that the myosin head could be attached to 3)
the energy, which is usually Adenosine triphosphate (ATP)
that allows the myosin to crawl along the actin filament.
Absent of any substance would cause muscle contraction to
stop. The measurement of nerve impulse is electromyogra-
phy (EMG) which is directly related to how much the muscle
is contracted.

There are two components to measure EMG (one of quan-
tification of muscle contraction) that is nerve conduction
study and needle EMG. Nerve conduction study places sev-
eral electrodes on the surface of the skin to measure the
sEMG while the needle EMG inserts a needle into muscle

tissue to evaluate muscle activity when at rest and when con-
tracted. The measurement of sEMG has limited assessments
of muscle activity. sEMG also cannot reliably discriminate
between discharges of two adjacent muscles. However, it is
less invasive and still provide sufficient information to be
used in our approach validated through a prototype.

4 FIELD STUDY
We did a 30-person field study at a local gym to further un-
derstand users’ training and recording habit as well as how
important is the weight used in their training. The users are
given several questions, for examples "Why do you work-
out?", "How often do you workout?", "What is the exercise
you selected?", "Do you record any information about your
training? If yes, how do you record it?", "Have you ever forgot
the weight or repetition of your exercise?", their respective
answers are recorded. Out of 16 male and 14 female, which
consists novice who just started training for few months
and veteran trainers who have been working out for over
ten years, 19 would remember the training variables includ-
ing weights, repetitions, and set numbers, 6 would record
the information using phone application, 1 would record
using pen and paper and the rest do not remember or record
any details. In the 5-Likert-scale rating on the importance
of recording to training, up to 83.3% of participants rated
it as important to very important. 26 out of 30 people had
experience of forgetting the exercise information leading
them to use the wrong weight or waste time on finding out
what weight they should use, hence there are needs to help
them record it. One of the participants quoted, "It is very
ineffective to not record what we did in a training, as it is
hard to know how could we progress. Moreover, it might
be very dangerous or time-consuming if we used the wrong
weight."

The field study showed the importance of recording vari-
ables, especially workload which motivates our approach
MuscleSense. Thus, a convenient way to sense weight while
training is essential to aid in recording the weights used.
The rest questions in this field study helped in designing our
system and study tasks.

5 SYSTEM DESIGN AND IMPLEMENTATION
We decided to make our approach more robust and scalable,
thus we augment user with sensors rather than augmenting
weights with sensors.

Device
TheMyo [9] is an off-the-shelf wearable armbandwith consumer-
grade wireless sEMG sensors. It consists of eight electromyo-
graphic (EMG) sensors (200Hz sample rate) and IMU (50Hz
sample rate) with a 3D gyroscope, 3D accelerometer, and



magnetometer. The amplitude of the Myo EMG signal is lim-
ited between -128 and 127 arbitrary Myo unit. The sample
rate and amplitude limitation of Myo suggest that it is not
suited to record high-quality sEMG signal data but it carries
sufficient information for hand movement classification [37].
Hence, we used Myo in our study, considering it is afford-
able by most people and should be capable to satisfy our
device requirement. However, using a commercial product
bear some limitations. (1) The Myo can only be stretched to
a radius of around 6cm. (2) The sEMG data provide by the
Myo is processed and thus the dynamic range of EMG signal
is limited.

Sensor Placement
We considered the potential positions of sensor placement in
various facets: (1) It should be able to fit into the Myo, that
is the parameter of the part should be less than 35cm or the
diameter should be less than 6cm. (2) It should contain active
muscles used in training. (3) There should be enough pres-
sure to push the electrodes to the skin. (4) Current positions
of wearable devices.
Thus, we chose the wrist, arm, and forearm as possi-

ble candidates. The wrist was then removed although it is
where an everyday wearable device for example watches and
armbands commonly located at. From the aspect of human
anatomy, part beneath the skin at wrist contains mostly ten-
don which might provide spurious signals due to cross-talk.
The sensors at the wrist may pick up signals induced by
surface friction, thus it was removed after validation that it
is futile to be used in sensing workload in a pilot study.

Bicep and tricep brachii located at arm are part of the main
muscles of the upper body, they are also the most common
muscles exercised in weight training directly or indirectly.
The forearm is the default working area of Myo, it could
provide EMG signals from fingers which are undoubtedly the
most commonmuscles we use daily. Moreover, themuscles at
forearm (brachioradialis) act as synergists muscle while we
grasp an object, such as a dumbbell in weight training. Hence,
we used a setup using 2 Myos to investigate the effects of
sensor placement and the feasibility to use respective sEMG
signals to sense workload at two positions: arm and forearm.

Signal Processing and Smoothing
The Myo streams raw EMG data of eight channels at the
rate of 200Hz and IMU data at a rate of 50Hz. The raw EMG
data has gone through a notch filter to avoid power grid
interference, the data are in arbitrary Myo units (a.u.) which
is -128 127 signed integer. There is no official translation
from a.u. to volts (V) or millivolts (mV).

Our interest is on the moving weighted average amplitude
of EMG signal [30], thus we tried two methods to smooth
the sEMG signal after the signal is rectified. One which used

a Butterworth band-pass filter of [10Hz, 100Hz], and then
smoothed with a low pass filter of 10Hz. Another technique
we tried is the Bayesian filtering [21] for sEMG based on
Markov process. The final results after Bayesian filtering
are more stable and contain fewer jitters thus was chosen,
although it is non-linear and takes more time to process.
Actual equation of our smoothing is as below:

recti f ied_sEMG = abs(sEMG − sEMG)

smoothed_sEMG = Bayesian(recti f ied_sEMG))

Figure 2: The sEMG data of a channel in a Myo. The light
blue dashed line (raw_sEMG) is the raw sEMGdata. The dark
blue line (rectified_EMG) is the rectified sEMG data. The
red line (Bayesian_envelope) is the smooth sEMG data using
Bayesian Filtering envelope.

Our signal processing results could be seen in Figure 2.

Machine Learning and Cross Validation
We demonstrated the feasibility of MuscleSense through a
proof-of-concept implementation using machine learning.
Prior work shows that Multilayer Perceptron Artificial

Neural Network (MLPANN) provide a good estimation of
hand force in isotonic condition [31].
Since EMG signal can be affected by some causative in-

trinsic factors such as electrode-skin interface, muscle-fibers
diameter, the number of muscle fibers, the distance between
skin-surface andmuscle-fiber, and the amount of non-muscle
tissue compared to active muscle fibers, which vary by per-
sonal physiological difference [15, 23]. We only used a per-
sonal model for our machine learning implementation.

The machine learning is implemented in Python 3.7 using
the Scikit-learn package. We chose regression over classifi-
cation based on the following consideration: (1) Workload
is ordinal instead of nominal, each of the classes (weight)
are closely related (2) Regression allows interpolation and
extrapolation, granting the system ability to sense smaller
units and unseen value(weights), which is quite important
as users may use workload differ from the training weights



We would then test and compare 3 sets of features, with
data from a channel being a feature:
(1) 8 channels sEMG data from arm Myo
(2) 8 channels sEMG data from forearm Myo
(3) 8 channels sEMG data from arm Myo + 8 channels

sEMG data from arm Myo
Each feature is series of average smoothed sEMG signal
amplitude for a single time window from a channel. The
timestamps are used to synchronize data from different Myo
if needed. Myo provide data of all channels simultaneously
every 0.05 seconds.
We also compared a series of regression models. The pa-

rameters of the regressions was decided through trial and
errors process.

• Support Vector Regression (SVR) using Linear Kernel
(auto gamma, C=1.0, epsilon = 0.2)

• Random Forest Regression (number of estimators =
200)

• Extra Tree Regression (number of estimators = 200)
• Multi-layer Perceptron Regression (’lbfgs’ solver)

The model is validated using leave-one-repetition-out and
leave-one-round-out cross-validation. The R2 and root mean
square error (RMSE) in each fold is then averaged.

6 USER STUDY
We conducted a user study to collect sEMG data for evaluat-
ing the accuracy of our method, to validate that our approach
is feasible.

Figure 3: a) Device setup uses 2 Myo. A Myo is on arm, the
other Myo is on forearm. b) The task of our user study, a
90°elbow flexion static hold for 3 seconds. The enlarged por-
tion showed the number of channel of arm Myo.

Participants
We recruited 20 participants (10 females, 10 males) with di-
verse cultural backgrounds and ages ranging from 19 to 30
(mean 24.1, SD 3.3). We included 2 (1 females, 1 male) partic-
ipants that do not involve themselves in any sports and 3 (2
females, 1 male) participants that do exercises which are not
strength training to verify that our approach is appropriate
for not only gym enthusiast but also regular user. One of the
20 participants is a female gym trainer.

Setup
The study is conducted in an indoor open space, with all
surrounding obstacles removed before the study. In the study,
participants are required towear twoMyos on the arm he/she
preferred as shown in Figure 3a.
(1) The first Myo is worn on the arm, with Channel 4 (the

channel with the Myo’s icon) locate above the belly of
bicep brachii.

(2) The second Myo is worn at the forearm, with Channel
4 facing upward while palm faces upward.

Experimental Design
There are several considerations during the design of our
study.

Task. Restricted by the maximum diameter Myo can fit in,
we chose single-sided bicep curl, a common exercise.

In this exercise, participants lift up a dumbbell from the
front of the thigh (concentric, biceps contract, triceps relax),
stop at the front of their shoulders and then slowly return
the dumbbell (eccentric, biceps relax, triceps relax) to the
initial position. The agonist muscles are biceps brachii, while
the antagonist muscle is triceps brachii. Only forearm move
during the exercise, the position of the arm should be idle.
The muscles at fingers and forearm are also involved while
participants hold the dumbbell.
In order to remove the impact of changes in force due

to motion, we modify our task into dumbbell static hold at
90 °elbow flexion as shown in Figure 3b. The static hold is
very similar to bicep curl at 90°elbow flexion, thus it could
be extended to bicep curl by using the sEMG signal at a
certain angle. Although static hold is an isometric exercise
that measures in maximum voluntary contraction (MVC)
while bicep curl is an isotonic exercise which measures in
one repetition max (1RM), MVC and 1RM are correlated [36].
We chose 3 seconds duration for the static hold in order

to provide sufficient data for training.

Procedure. Before the study starts, participants would es-
timate their 1RM through their weight of 5RM to 8RM to
decide what is the maximum weight they are lifting [8]. Par-
ticipants are given instructions on study procedures and



Figure 4: The boxplot of RootMean Square Error (RMSE) of leave-one-repetition-out and leave-one-round-out cross-validation
in kilogram (kg). The black * represents a statistically significant difference between RMSE of different feature set using the
same regression model. The blue * represents a statistically significant difference between RMSE of leave-one-repetition-out
(non-fatigue) and leave-one-round-out (different fatigue) scenario.

precautions of the task while warming up for the study task
using the 1kg dumbbell. The precautions include but are
not limited to try to only use your biceps, do not swing the
dumbbell while holding, do not hold your breath, do not over
flex your muscles and others. The study conductor would
then demonstrate the task to the participant.

Participants would perform the task (static hold) for 3 sec-
onds in a set of 3 repetitions for each weight for 3 rounds.
The weights are in a range of 1kg to 75% of participants’
respective 1RM, in a 1kg interval. The maximum weights
used ranged from 4kg to 19kg ( mean= 8.85kg). The order of
weights is randomly shuffled. 5 seconds rest is given between
repetitions, while 30 seconds rest is given between weights
and 2 minutes rest is given between rounds. If the participant
couldn’t finish all repetition of a certain weight, the weight
and following weight that are heavier in current and subse-
quent rounds are skipped. The angle of wrist, forearm, and
shoulder are controlled, thus the postures of a participant
would be as identical as possible for all repetition.

We choose a repetition of three and weight up to 75% of
1RM (N) as a result of our pilot that this would provide a
good balance of fatigue and the ability to complete most of
the weights.

Every roundwould contain amaximum of 3 repetitions * N
weights, providing up to 9 * N trials of task per participant in
3 rounds, with N be their respective study maximum weight.
The study lasts up to 2 hours depends on the weights the
participant is lifting.

While performing the task, the sEMG signals, orientation,
gyroscope, accelerator data of all Myos are sent to the com-
puter using Bluetooth adapter at their respective sample rate
which is 200Hz for sEMG and 50Hz for others.

Noted that in every round, the participants are always
more fatigue than the previous rounds but we do not try to
quantize the fatigue level because the cognition of fatigue is
different from person to person.

7 RESULTS
We present our results in leave-one-repetition-out and leave-
one-round out cross-validation. The leave-one-repetition-
out cross-validation uses one of the repetition from a single
round as test data and the other two repetitions as training
data. The outcomes for each fold would then be averaged to
produce a result for each round, followed by averaging the
results from each round to get each participants’ result.
The leave-one-round-out cross-validation uses all (3) of

the repetitions from a round as test data and the rest repeti-
tion from the other two rounds as training data. The results
for each fold would then be averaged to produce a result
for each participant. Since our user study is a task of 3 rep-
etitions in 1 set for each weight for 3 rounds, both of the
cross-validations are 3-fold cross-validation. All of the re-
gression models use 8 features which are average smoothed
signal’s amplitude in a sliding time window of 0.5s from 8
channels of a Myo with the exception of the model that uses
a combination of data from the arm Myo and the forearm
Myo which has 16 features (channels).



The outcomes we obtained is the R2 and the calculated
root mean square error (RMSE, in kg). R2 describes how well
the regression model is fitted and the root mean square error
describes how far is the estimated value away from the actual
value.

Our cross-validation results can be seen at Figure 4. All
regressions provide an average R2 of over 0.80 for all feature
sets, thus they all provide a quite good fit. From the results
of the Wilcoxon rank-sum test, there is a significant differ-
ence between RMSE of forearm+arm Myo feature sets and
the other two (forearm Myo p=0.029 and arm Myo p=0.024)
using random forest regression in leave-one-repetition-out.
There is also a significant difference between RMSE of fore-
arm+arm Myo feature sets and forearm Myo using extra tree
regression (p=0.041<0.05). For the case of leave-one-round-
out cross-validation’s RMSE, there is a significant difference
between RMSE of forearm+arm Myo feature sets and arm
Myo (p=0.018<0.05) using random forest regression, while
a significant difference between RMSE using extra tree re-
gression of forearm+arm Myo feature sets and arm Myo
(p=0.015<0.05) is present.

Figure 5: The comparison of RMSE of leave-one-repetition-
out (non-fatigue) and leave-one-round-out (different fa-
tigue) scenario using Forearm+Arm sEMG sensors.

Generally, our approach is robust to fatigue as shown in
Figure 5. Although there isn’t a significant difference be-
tween feature sets found in all regression models using sta-
tistical tests, we could see that the average RMSE of multiple
sensors is always better than single sensor. Thus, multiple
sensors should be used if possible but single sensors would
still work fine.

It is also quite vivid that arm’s RMSE in leave-one-round-
out cross-validation is worse than in leave-one-repetition-
out, although there is no statistically significant difference.
This suggests that the agonist (arm) muscles’ sEMG signal
do affect by fatigue, as a larger variation is observed while

we use data across rounds in cross-validation. Although syn-
ergistic (forearm) muscle may not provide direct sensing, its
sEMG signal is correlated with the task and do not suffer
severely from fatigue gained in training.

Training with a larger interval
We modify our training and testing data to better compare
with Interferi’s results. In a leave-one-weight-out cross-validation
using weights interval of 2kg, our approach archived RMSE
of 0.801 kg using linear kernel SVR and sEMG sensor at fore-
arms. The RMSE is around 44% of the interval (2kg), while
Interferi’s is 53% (1.36kg interval).

8 DISCUSSION
Although our user study task is constrained (fixed motion
and velocity) while we validate our approach using 90°elbow
flexion static hold, our results suggested that sEMG signal
from synergistic muscle could be used. Muscles at the fore-
arm, functioning as synergistic muscles, are used in most
strength training exercise and thus our approach is feasible
for other exercises that involve grasping an object, regardless
of free weights or a constant weight workload.
In our study, we try to investigate the effect of fatigue in

different rounds of strength training, using the assumption
that participants do not become more fatigue in a single set
which differs from the actual scenario. We do notice that
some weight orders, for example, 1kg workload before 5kg
while 10kg (maximum weight) workload before 4kg would
make the sEMG signal of 4kg and 5kg harder to differen-
tiate. The effect of fatigue in a single set would be further
investigated in our future work.
Although the Myo has limited signal dynamic range, it

could still provide a quite good prediction of workload. The
circular arrangement of sEMG sensors allows the surround-
ing muscles to provide information, so the sEMG sensors
may not able to be positioned directly on the muscle; how-
ever, additional signal channel calibrations are needed to
make sure that the sensors could match the channel position
of training data.
Our approach’s resulting lowest RMSE is 0.683kg, which

is not significantly larger than the interval of 1kg; although
it does not provide excellent results in predicting workload
in our study, a lot of training equipment has a larger weight
interval, such as 5 lbs (2.26 kg) which means it might work
fine in an actual training scenario. Still, we would refine our
approach in the future to strengthen its capabilities to sense
workload at a finer measure.

9 CONCLUSION
In this paper, we proposedMuscleSense, an approach sensing
training weights in strength training using wearable surface
Electromyography. Our user study results demonstrated that



our approach is feasible, predicting workload at adequate
accuracy and error. Our results suggest that a similar system
could choose multiple sensors at primary and supportive
muscles for the best results, primary muscles for non-fatigue
tasks and supportive muscles for fatigue tasks.
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