HapticSeer: A Multi-channel, Black-box, Platform-agnostic
Approach to Detecting Video Game Events for Real-time Haptic

Yu-Hsin Lin

National Taiwan University

Taipei, Taiwan

yuhsin.lin@outlook.com

Yun-Ting Cheng

National Taiwan University

Taipei, Taiwan

r09922063@g.ntu.edu.tw

Feedback
Yu-Wei Wang

National Taiwan University
Taipei, Taiwan
willieyuwei4@gmail.com

Yuan-Chih Hsu
National Taiwan University
Taipei, Taiwan
wendeehsu@gmail.com

Mike Y. Chen
National Taiwan University
Taipei, Taiwan
mikechen@csie.ntu.edu.tw

HapticSeer

Pin-Sung Ku
National Taiwan University
Taipei, Taiwan
scott201222@gmail.com

Ching-Yi Tsai
National Taiwan University
Taipei, Taiwan
r09944022@ntu.edu.tw

Raw Data Feature
Capturer Extractor

Figure 1: A high-level display of HapticSeer’s architecture. Workflow from left to right: a) Use black-box approaches to collect
data from video games. b) Process data and generate semantic features with HapticSeer. c) Trigger haptic devices in real-time
when game events are detected. (Icon credits: by authors and also from flaticon.com)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI 21, May 8-13, 2021, Yokohama, Japan

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8096-6/21/05...$15.00
https://doi.org/10.1145/3411764.3445254

https://doi.org/10.1145/3411764.3445254

CHI ’21, May 8-13, 2021, Yokohama, Japan

ABSTRACT

Haptic feedback significantly enhances virtual experiences. How-
ever, supporting haptics currently requires modifying the codebase,
making it impractical to add haptics to popular, high-quality expe-
riences such as best selling games, which are typically closed-source.
We present HapticSeer, a multi-channel, black-box, platform-agnostic
approach to detecting game events for real-time haptic feedback.
The approach is based on two key insights: 1) all games have 3
types of data streams: video, audio, and controller I/O, that can be
analyzed in real-time to detect game events, and 2) a small number
of user interface design patterns are reused across most games,
so that event detectors can be reused effectively. We developed
an open-source HapticSeer framework and implemented several
real-time event detectors for commercial PC and VR games. We val-
idated system correctness and real-time performance, and discuss
feedback from several haptics developers that used the HapticSeer
framework to integrate research and commercial haptic devices.

CCS CONCEPTS

« Information systems — Multimedia and multimodal re-
trieval; « Human-centered computing — Systems and tools
for interaction design.

KEYWORDS

Haptics, Multi-modal, Event detection framework,

ACM Reference Format:

Yu-Hsin Lin, Yu-Wei Wang, Pin-Sung Ku, Yun-Ting Cheng, Yuan-Chih
Hsu, Ching-Yi Tsai, and Mike Y. Chen. 2021. HapticSeer: A Multi-channel,
Black-box, Platform-agnostic Approach to Detecting Video Game Events
for Real-time Haptic Feedback. In CHI Conference on Human Factors in
Computing Systems (CHI "21), May 8-13, 2021, Yokohama, Japan. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3411764.3445254

1 INTRODUCTION

Haptic feedback significantly enhances virtual experiences. How-
ever, adding haptics to a virtual experience currently requires hav-
ing access to modify its codebase. For example, for game developers
to vibrate controllers, they need to add code to invoke the hap-
tics API provided by the software development kit (SDK) of the
platform, such as Handheld.Vibrate () when using Unity3D.

This limitation makes it challenging to add haptics to commercial
games, which are typically closed-source. One workaround that
haptics developers have used is game audio analysis, by triggering
vibration and varying its intensity based on audio features such as
volume and impulses. However, this audio-only approach is limited
in precision and limited in the types of events it can support.

We present HapticSeer, a multi-channel, black-box, platform-
agnostic approach to detecting game events for real-time haptic
feedback. Our approach is motivated by two key insights:

o All games produce 3 types of data streams: 1) video, 2) audio,
and 3) controller I/O, that can be analyzed to detect game
events.

o A small number of user interface design patterns are used
by most games, so that code written to detect events for a
game can be reused for many other games.

Yu-Hsin Lin, Yu-Wei Wang, Pin-Sung Ku, Yun-Ting Cheng, Yuan-Chih Hsu, Ching-Yi Tsai, and Mike Y. Chen

We developed an open-source HapticSeer framework! to capture
video, audio, and controller I/O in real-time. It provides the captured
data, event system, and abstraction for feature extractors and event
detectors to simplify the integration of haptic devices, as shown in
Figure 1. Feature extractors process raw video, audio, and controller
sensor data to produce features that can be used by other feature
extractors and event detectors. Event detectors generate events that
haptics developers can listen for in order to actuate their haptic
devices.

To validate the system correctness and performance, we imple-
mented several real-time, multi-channel event detectors for com-
mercial PC and VR driving and first-person shooter games. These
include a speed detector, an inertia detector, a player hit detector,
and a gun fire detector for Project CARS 2, Half-Life: Alyx and
Battlefield 1 (their gameplay are shown in Figure 2).

To understand how UI design patterns are reused across popular
games, we surveyed 30 top first-person shooter (FPS) games [12]
and 20 top driving games [6, 7] and categorized their designs for
4 common types of information: 1) ammunition count, 2) health
status, 3) damage indicator, and 4) driving speed. Figure 3 shows
the percentage of games that use a particular UI design, and shows
that the top two UI designs are used by more than 80% of the games
across all 4 types of information display. For example, the top design
for ammunition count displays the information as numbers (87%)
and the top two designs for driving speed display the information
as numbers and tachometers (80%).

To collected feedback from haptics developers, we invited sev-
eral developers to integrate their haptic devices with commercial
games using HapticSeer. All were successful in using the provided
event detectors and expressed interests in using HapticSeer for
their devices. Developers reported that HapticSeer could make the
integration of haptic devices and commercial games easier while
retaining imperceptible end-to-end latency in study cases; more-
over, it only took them less than two hours (1 hour and 13 minutes
in average) to learn HapticSeer and integrate the devices, which is
relatively a short time for developing demo applications.

2 RELATED WORK

Force feedback has been a ubiquitous and famous topic to enhance
the immersion of game experiences. However, demonstrating hap-
tic experiences usually require well-designed contents of demo
scenes, which is a time-consuming job. To explore the possibility
of developing real-time force feedback systems, we review some
existing approaches, including white-box approaches and black-box
approaches. For specific, white-box approaches require announced
application programming interfaces (APIs) for integration with
haptic devices, while black-box approaches process data from user-
acquirable channels, including visual channels, audio channels, and
I/O channels from peripherals.

2.1 Explicit API Approach

2.1.1 Haptic Device APl for Games. Some commercial games nowa-
days support external haptic devices, such as Xbox One Controller [26]
and Logitech Gaming Racing Wheel [16]. These devices have re-
leased SDKs for everyone to integrate content with their devices;

! Available at HapticSeer.org and https://github.com/ntu-hci-lab/HapticSeer

https://doi.org/10.1145/3411764.3445254
https://HapticSeer.org
https://github.com/ntu-hci-lab/HapticSeer

HapticSeer: A Multi-channel, Black-box, Platform-agnostic
Approach to Detecting Video Game Events for Real-time Haptic Feedback

CHI °21, May 8-13, 2021, Yokohama, Japan

Figure 2: Gameplay footage of three popular commercial games: (A) Half-Life: Alyx, (B) Battlefield 1 and
(C) Project CARS 2. The heads-up displays (HUDs) on screen are highlighted.

for example, Xbox provides APIs for developers to fetch the button
presses events or transmit a rumble request. Haptic developers do
not need to know what game events have occurred. That is, haptic
developers only need to provide an interface of haptic devices that
can transmit controller status and receive requests from games.
However, haptic developers would not be involved in the future
integration of new games and their devices, which may lead to
compatibility issues.

2.1.2 APl Exported from Games. Some commercial games provide
telemetry APIs for external software and hardware to fetch in-
game information. Some works utilize telemetry APIs to receive
in-game information and parse it to control external hardware,
such as HeadBlaster [15] and Sim Racing Studio App [21]. However,
most of the games supporting such a method to monitor game
events are car-racing simulators. Another limitation is that haptic
developers can only retrieve predefined events provided natively
by games, such as vehicles’ velocities. It is challenging for haptic
developers to fetch specific information from telemetry APIs, such
as the wheels’ texture. Thus, this approach is only suitable for
limited haptic devices.

Another method to fetch in-game information involves utilizing
game modifications (mods). Game mods are external software or
materials that would affect game behaviors. Mod-friendly games
provide support for modifying game routine, so haptic developers
can utilize mods to extract game events not provided natively by
these games. For example, HaptiVec [8] modifies an open-source
game, Chocolate Doom, to extract the direction of an attack that
hits the player. However, not every game supports the modification
of games because of the anti-cheating or anti-copying mechanisms.
Besides, the mod codes are usually not reusable if haptic developers
try to make their devices support other games.

2.2 Black-box Approach

2.2.1 Using Visual Channel. Vision is one crucial sense organ of
the five senses because vision contains rich information. Players
generally focus on the screen while playing games; therefore, game
developers design several information panels providing essential in-
formation for players, such as the ammunition count, the speedome-
ter of cars, and the player’s health bar. Navigation systems also
present multiple information via vision rather than using voice
prompts. Several works have presented the feasibility of extracting

information from vision, and a famous one is Sikuli [27]. Sikuli is
a framework that allows GUI testers to test their graphical user
interface (GUI) automatically with writing scripts. Several images
are specified in the scripts to define which GUI widgets to be tested.
Sikuli utilizes computer vision techniques to search images pre-
defined in scripts from the screen. After a comparison, Sikuli can
perform an action on the corresponding widgets on the screen.

2.2.2 Using Audio channel. Sound effects in games can improve
immersion significantly. Nowadays, game sound effects are capable
of simulating different direction and intensity of the sound source.
The most common sound system is stereophonic sound, which uses
two independent speakers to create the illusion of sound direction.
To further enhance the directional distinguishability, some games
support surrounding sound systems. For example, a 5.1 surrounding
sound system uses five speakers, including a front-left, a front-
right, a left, a right, and a center speaker to reproduce full-range
sound effects, and is equipped with a sub-woofer to reproduce
low-frequency effects (LFE). A commercial product, bHaptics [3],
utilizes the feature of surrounding sounds to integrate commercial
games with their haptic devices.

2.2.3 Using Controller I/O channel. Haptic feedback has been ex-
plored since the late 1990s and has been added to controllers to
enhance immersion experiences. Controller I/O is an integrated
part of the interaction between games and players. Some shooting
games make the controller vibrate to simulate the recoils of a gun
firing. To apply force feedback on self-designed controllers, mon-
itoring the vibration events is an easy way. A commercial force
feedback device, ForceTubeVR [11], exploits the controller I/O chan-
nels, which is called SteamVR Backward Compatibility. When a
rumble request from SteamVR is sent, the ForceTubeVR application
will actuate their haptic device. However, other game events may
induce vibration, such as walking on gravel or being attacked by
enemies. Therefore, it is troublesome to distinguish events from
only vibration information.

3 APPROACH

To achieve our purpose in providing a framework for haptic develop-
ers to integrate commercial games with their devices, we designed
a workflow for the framework. HapticSeer decouples in-game data
analysis into interchangeable components with three abstract levels
- data capturers, feature extractors, and event detectors. Following

CHI 21, May 8-13, 2021, Yokohama, Japan

Yu-Hsin Lin, Yu-Wei Wang, Pin-Sung Ku, Yun-Ting Cheng, Yuan-Chih Hsu, Ching-Yi Tsai, and Mike Y. Chen

(1] 86.7% |© 10%

6.7%

i 2030)

i)

0O
1] 43.3%|© g 13.3%

46.7% | O
O 10% |0 10%

T
x 0

(A) Ammunition count. Display method: (1) digit (2) no display (3)
bullet icons

av e
(B) Health. Display method: (1) bar (2) digit (3) reduce point-of-
view (4) no display (5) other forms

o

(1] 56.7% |© © 16.7%|@ 10%

X

=

(===

30%
O 7%

- "

[1] 45% | @

) M

43 mpn

35% |© 10%

10%

(C) Damage indicator. Display method: (1) 2D indicator (2) screen
edge indicator (3) flashing (4) no display (5) blood effect

(D) Speed. Display method: (1) digit and tachometer (2) digit (3)
circular speedometer (4) no display

Figure 3: Display pattern categories of the four HUD types in the top 30 FPS games and the top 20 driving
games. A higher percentage means a higher frequency of occurrence in games. Some games may simulta-
neously possess multiple display methods within one HUD type. (Icon credits: by authors and also from

flaticon.com)

this design pattern, HapticSeer become a flexible and collaborative
system that allows other developers to design and share their fea-
ture extractors or event detectors. As more contributions are made,
the system will be more robust and versatile.

3.1 Data Streams

Visual, audio, and controller I/O are three essential input chan-
nels to support in-game data collection without any API or game
modification. The visual channel provides rich information and
extractable cues, though it is restricted in the player’s field of view;
therefore, events happening off-screen are unobservable. The audio
channel, in contrast, can receive omnidirectional information. It is
relatively easier to extract features from audio waveform than from
images. However, audio-based models are sensitive to noises, and
the requirement of time windows causes latencies. Controller I/O
channel possesses the advantages of having zero latency and being
a noiseless data stream directly derived from user input. However,
merely obtaining controller information is inadequate to construct
a complete semantic message.

Event detectors in HapticSeer rely on multiple data streams
to make up each channel’s deficiencies. For example, calculating
the centripetal acceleration of vehicles in driving games needs
data from both video and controller I/O channels. A video feed
provides the current speed by HUD, while controller input indicates
the vehicle’s turning angle. With the multi-channel approach, the
amounts of detectable events could be extended, and the event
detectors could operate more precisely.

3.2 Design Patterns

Heads-Up Display(HUD) is a universal interface design in com-
mercial games to display character status, and HUD patterns are
identical in games with the same genres. For example, in first-person
shooter games, we can find displays such as ammunition count,
current health, weapon type, and mini-map. Though each game
has its unique interface design, HUDs can still be categorized into
few categories. Our event detectors could extract information from
the same categories with slight adjustments.

We surveyed 30 top FPS games [12] and 20 top driving games [6] [7]
to categorize HUD types and searched for their common grounds.
As shown in Figure 3, 86.7% of the ammunition count is displayed
by digits, and 6.7% is displayed by icons, while three out of 30 games
do not show the ammo information. Health status is displayed 43.3%
by digits and 46.7% by health bars. Sometimes, the health display
icon might be unique forms such as heart shapes or circular format.
13.3% of the games do not hold a health illustration. Instead, they
narrow down the more point-of-view(POV) as the player loses the
more health. As for damage indicators, there are six kinds of repre-
sentations. The most common ones are 2D indicators and screen
edge indicators, having 56.7% and 30% occurrence rates. Damages
displayed by other types like 3D indicators, screen flashing, screen
blur, or bloodstain range from 6.7% to 16.7%. Except for screen
flashing and blurring, all of the damage indicators are directional.
In the top driving games, 80% of the games use digits as a speed
showcase, and 55% of them have an extra circular speedometer or
a tachometer.

HapticSeer: A Multi-channel, Black-box, Platform-agnostic
Approach to Detecting Video Game Events for Real-time Haptic Feedback

Haptic Devices

t

Event Detectors

[] I outlets
Feature Extractors Inlets
mmp Message

Raw Dalal l
| |

Audio / Video
Capturers

Controller 1/0
Capturers

Gunfire Detector

CHI 21, May 8-13, 2021, Yokohama, Japan

r’

w

Player Hit
Detector

< O

Inertia Detector Speed Detector

e
3] ® W\
—— v
OCR Number Damage Indicator Health Bar Pulse Extractor

Extractor

Audio Capture

Extractor

Ll A

Xbox Controller
Input

Extractor

o
e

OpenVR

Visual Capture
Controller Input

Figure 4: System Overview. (Icon credits: by authors and also from flaticon.com)

We surveyed four HUD types to categorize the display patterns
and learn their frequency of occurrence. We chose the patterns with
a higher appearance rate to be our feature source in the later detec-
tor implementation stage. The selected display patterns are listed
as follows: 1) ammunition count with digit display, 2) health with
health bar or image display, 3) damage indicator with 2D indicator
display, and 4) speed with digit display. Additionally, we added in
impulse pattern, which is captured from the audio channel, to be
our fifth feature source. These chosen patterns are extracted from
the visual and audio channels, which fit the black-box approach
category.

3.3 Latency Threshold Requirement

We studied the latency thresholds for different feedback modalities
to ensure that our system response times for each channel meet
the requirements.

According to Attig [2], if system latency or system response time
exceeds a certain threshold, users could notice the delay, therefore
affecting the users’ experience and satisfaction. The author indi-
cated that a classic latency threshold of 100ms based on expert
estimation and empirical data was made popular by Nielsen [18].
On the other hand, an overall latency threshold of 100ms for sim-
ple feedback and 200ms for complex feedback from recent latency
guidelines was also concluded by the author. As for different feed-
back modalities, guidelines by Kaaresoja et al. [13] mentioned that
visual, audio, and tactile feedback have individual latency thresh-
old. The maximum threshold for visual feedback is 85ms, for audio
feedback is 70ms, and tactile feedback is 50ms. If the feedback is
bimodal (i.e., visual-audio, visual-tactile, tactile-audio), the single
modality threshold will have slight changes, but the thresholds are
mostly still in the boundary of 50-100ms.

4 SYSTEM DESIGN

We implemented a system whose components are mostly language-
independent, loosely coupled, and encapsulated by utilizing a cen-
tral message broker. As shown in Figure 4, our system architecture
comprises three levels of components, raw data capturers, feature
extractors, and event detectors. All of the message passing between
components, except video and audio streams, is achieved by the
message broker. Moreover, we implemented a file-based launcher
for users to modify the components of HapticSeer before initiating
the system.

4.1

A central message broker is an integrated part of most systems
with centralized Publish-subscribe pattern [10]. HapticSeer needs a
reliable and high-performance broker to support real-time messag-
ing. After evaluating existing message broker solutions, we decided
to utilize Remote Dictionary Server (Redis) as HapticSeer’s cen-
tral message broker, instead of making one by ourselves. Redis is
the most popular open-sourced in-memory database that supports
working as a message broker (Pub/Sub mode), and it possesses
sub-millisecond latency and high throughput, making it the best
candidate for our use case.

Message Broker

4.2 Components

A working instance of HapticSeer is composed of a user-defined
combination of components, which are, in our case, implemented
by C# running under .NET Framework. Every component in Haptic-
Seer will publish their results by their outlets, and a component at
higher abstract levels will receive their output by inlets connecting
to their outlets. This encapsulation reduces the complexity of Hap-
ticSeer because haptic developers will only need to examine the I/O
message format instead of figuring out what is precisely done in the
components. After ensuring the dependency among components,

CHI 21, May 8-13, 2021, Yokohama, Japan

haptic developers should be able to assemble a working instance of
HapticSeer in a short time.

4.2.1 Raw Data Capturers. Raw data capturers are components
collecting, pulling, or listening to PC peripherals’ signals/events
and other data sources such as audio buses and video buffers. How-
ever, we found that some of the data streams are inapplicable of
being transmitted through Redis Pub/Sub, e.g., uncompressed video
streams and Hi-Fi surround-sound tracks. Therefore, raw data cap-
turers belong to this stage are mostly peripheral data listeners. On
the other hand, through video and audio streams are inapplicable of
being transmitted through Redis, we still implemented two types of
raw data capturer (DirectX, WASAPI) transmitting through bypass
channels.

4.2.2 Feature Extractor. After raw data is retrieved from the data
source, some raw data types have to be transformed into features for
further processing. Since some extractors share the same data, they
need to listen to the same data source; therefore, we categorized
them as feature extractors for better system abstraction.

4.2.3 Event Detectors. 1t is possible to detect certain game events
(e.g., gunshots within a single magazine) by a single feature extrac-
tor in a controlled environment; however, reference a single feature
to detect events can be inapplicable because of high false-positive
error stemming from inconstancy through the gameplay. Moreover,
some feature extractor could only produce non-semantic features
such as audio pulse state, and certain events require additional
raw data for inferring. Therefore, we need to parse extracted fea-
ture/raw data combination by predetermined rules (symbolic AI)
or learning-based models.

4.2.4 Launcher. We implemented a file-based launcher for quick
deployment and configuring HapticSeer. Users could generate a
configuration file with JavaScript Object Notation (JSON) format
to assemble HapticSeer as ease. As shown in Figure 5, users only
need to fill in sections of demanded components and set their inlets,
outlets, and startup arguments, then the HapticSeer’s launcher will
automatically instantiate each component for the user.

- [

Inertia
Detector

OCR Number
Extractor

1

- R Bl

Xbox Controller Visual Capture
~ 7/
Imput M= m e m oo

Figure 5: An example of the configuration file. (Icon
credits: by authors and also from flaticon.com)

Yu-Hsin Lin, Yu-Wei Wang, Pin-Sung Ku, Yun-Ting Cheng, Yuan-Chih Hsu, Ching-Yi Tsai, and Mike Y. Chen

5 IMPLEMENTATION

HapticSeer proposes a framework that enables users to integrate
their haptic devices with commercial games through black-box ap-
proaches. In this paper, we demonstrate the feasibility of using user-
acquirable information to detect game events. In this section, we
introduce the methods of capturing data and analyze the reliability
of each channel. According to a survey conducted by Statista [20],
PC is the most popular target platform for developers, and more
than 66% of game developers are currently developing games for
PC. To maximize the coverage of game content, HapticSeer runs
on Microsoft Windows 10, which is the most common operating
system in Steam Hardware and Software Survey [25]. To further
clarify the system properties of HapticSeer, we designed several
experiments in this section. All tests were conducted on a 16-Core
computer with 32GB DDR4 memory, and the operating system and
drivers were upgraded to the latest version. Besides, self-designed
programs were all built by Visual Studio 2019, and all of the external
programs were the latest stable released version.

5.1 DirectX Capturer

DirectX is a collection of graphics rendering APIs on Microsoft
platforms and is commonly used in commercial games. Another
famous graphics rendering API for rendering graphics is Vulkan,
which provides cross-platform APIs for developers. HapticSeer’s
DirectX capturer supports every application running under Win-
dows operating systems, not only those implemented with DirectX
APIL

5.1.1 Capture Method. We use Microsoft DirectX Graphics Infras-
tructure (DXGI) to capture the screen. DXGI is designed to manage
low-level tasks and communicate with the kernel mode driver and
system hardware. In DXGI 1.2, it provides the Desktop Duplication
API, which allows developers to fetch the whole monitor screen
with low latency. Moreover, frames captured by DXGI Desktop
Duplication API will not contain the mouse pointer; therefore, we
can get pure game frames without any interference from it.

5.1.2 Capture Latency. The capture latency is the elapsed time
from when each frame is produced to when it is ready to be pro-
cessed. DXGI provides a simple way to capture the whole screen
with low latency. To measure the latency of capturing, we devel-
oped a console application that keeps printing the current time,
whose resolution is a millisecond. The time shown in the console
would be seen as a rendered timestamp. When the screen capturer
received a new frame, we would record the received timestamp,
and the new frame also contained a rendered timestamp. The calcu-
lation of capture latency is subtracting those two timestamps. The
resolution to latency is one millisecond. Our experiment collected
48 samples, and the average latency is 13.6 ms (SD = 6.312), while
87.5% of latencies are below 17 ms.

5.2 WASAPI Capturer

Playing audio streams in Microsoft Windows is quite complicated.
Microsoft provides several APIs for developers to perform audio
operations, such as recording and sound mixing.

HapticSeer: A Multi-channel, Black-box, Platform-agnostic
Approach to Detecting Video Game Events for Real-time Haptic Feedback

5.2.1 Capture Method. In Windows 10, there is a loopback adapter
provided by Windows Audio Session API (WASAPI). It allows de-
velopers to record computer playback with low latency and capture
the surrounding sound from the audio endpoint buffer. We chose
WASAPI to capture audio streams from audio endpoint devices.
However, the audio streams WASAPI provides are a chunk of audio,
so there is a time window in each capture. In other words, the
capture latency includes buffer-filling time and transmission time.
Besides, because the capture method WASAPI provides is to fetch
data from audio endpoints’ buffer, we can only get a mixed audio
stream rather than pure audio streams from each application.

5.2.2 Time Window. The time window is used to describe the
fixed interval of time when the data stream is processed for query
and mining purposes [9]. In HapticSeer, the time window only
appears in audio channels. WASAPI provides a method that records
the audio loopback stream, and the time window latency depends
on the size of the buffer. In HapticSeer, the time window is 10
milliseconds.

5.2.3 Capture Latency. We used Audacity to test the latency of
recording audio streams via WASAPI. Audacity is an open-source
audio editing and recording application, and it provides an easy
way to measure the latency of recording. To simulate the audio
capturer’s latency of our system, we set all parameters we used in
HapticSeer. Expressly, the buffer size was set to 10 milliseconds, the
latency compensation was set to zero, and the sample rate was set to
32bit/48000Hz. According to our measurement, the latency, includ-
ing a time window, is about 16 milliseconds for a 5.1 surrounding
sound device.

5.3 Controller I/O Capturers

This paper focuses on Xbox One Controller and off-the-shelf VR
Controller, including HTC Vive Controller, HTC Cosmos Controller,
and Valve Index Controller.

5.3.1 Capture Method. Microsoft provides an API, XInput, that
allows applications to communicate with Xbox controllers. We can
fetch controllers’ information through XInput, such as a thumb-
stick’s position, the proportion of a trigger pressed, and button
presses. HapticSeer fetches the status once per millisecond(1000
Hz), which is relatively faster than the frame update rate. However,
due to the lack of function in XInput that can query vibration infor-
mation, it is impossible to get any vibration information. The only
way to get vibration information is to hook XInput APIs in games.

When it comes to VR games, OpenVR is a necessary SDK devel-
oped by Valve for supporting SteamVR. OpenVR provides a series
of APIs that help developers to communicate with VR hardware
devices. Developers can retrieve VR controllers and VR headsets’
status, including their position and orientation, vibration events
from games, and button status of controllers. The data updating
rate of tracking object position and orientation is based on the
tracking frequency of inside-out tracking or outside-in tracking.
We developed an OpenVR-based application that fetched data once
per ten milliseconds (100 Hz). We have tested our application on an
inside-out tracking system, HTC Vive Cosmos, and an outside-in
tracking system, Valve Index. We also tested the usability of adding
new kinds of controllers to our application.

CHI 21, May 8-13, 2021, Yokohama, Japan

5.3.2 Capture Latency. Since the capture method of controllers I/O
calls the native APIs that game developers use, the Controller I/O
channel is the only channel that we might fetch data before games.
The latency is caused by the time lag between a new controller
status occurred and fetching controller status by our application.
Thus, the latency depends on the frequency of calling APIs. We
call XInput API to fetch Xbox Controller status at 1000Hz, so the
latency for Xbox Controller was below one millisecond. For VR
Controllers, the position and orientation are calculated by the track-
ing system, and the frequencies of the tracking system are limited to
the mechanical design. To solve the problem, OpenVR uses Inertial
Measurement Unit (IMU) sensors to estimate the position and the
orientation. Because the estimation was not reliable enough, we
called OpenVR API to fetch VR devices’ status 100Hz to reduce our
system’s fault rate.

5.4 Feature Extractors

We implemented a variety of feature extractors for the user study
and the evaluation. Though the number of implemented extrac-
tors is limited, they can apply to many games because of their
fundamentality.

5.4.1 Optical Character Recognition Number Extractor. HUD infor-
mation such as ammunition count and character status is a useful
in-game feature. These data are exact words or numbers to human
eyes but need additional procedures to be converted into meaning-
ful text types for computers. To fetch semantic information from
the HUD, we applied real-time OCR on video frames to obtain
the desired data. The optical character recognition (OCR) engine
we used is Tesseract OCR [23], an open-source project started by
Hewlett-Packard Company and developed by Google in 2006.

Since most of the game HUD backgrounds are semi-transparent,
any object moves behind the HUD can affect word-finding. There-
fore, binarization and denoising are essential processes that boost
our OCR result’s accuracy. We used a fine-tuned pre-trained Eng-
lish/Numerical model to support numeric character detection for
the speed extractor and bullet number extractor.

5.4.2 Health Bar Extractor. Health bars are used to visualize the
protagonist’s health status in-game, and the primary key of the
health bar’s design is to make players comprehend easily. Most
commercial games indicate the protagonist’s health status by var-
ing in the health bar’s area in HUD. Thus, we can calculate the
proportion between the current bar’s area and the full bar’s area,
and the fraction is regarded as the protagonist’s health. In Haptic-
Seer, we first remove the background of the health bar and then
calculate health status via this approach. Although several shapes
have been used in health bars’ design, such as a classic horizontal
bar in Battlefield 1 and three hearts in Half-Life: Alyx, the approach
can still precisely calculate the protagonist’s health.

5.4.3 Damage Indicator Extractor. From the very beginning of FPS
games’ history, damage indicators have been an integral part of
these games. We could use directional damage indicators to fetch
hit information from games. In our case, we implemented a damage
indicator extractor for 2D indicators around the cross-hair. The
damage indicator extraction involves these steps:

CHI 21, May 8-13, 2021, Yokohama, Japan

(1) Crop the incoming frame to leave pixels around the cross-
hair only.

(2) Filter out pixels that are not similar colors to predefined
reference colors for indicators (mostly red).

(3) Adopt the pixel-based difference to find the emerging objects,
such as damage indicators.

(4) Apply a binary threshold on the frame to eliminate noises.

(5) Sum all vectors from the middle of the screen to each resid-
ual pixel’s position as the incoming direction and signal
intensity, then send to extractors.

5.4.4 Pulse Extractor. Some shooter games are challenging to re-
trieve firing information from them, such as games without HUD.
Moreover, sometimes developers have to fetch more detailed dam-
age information (e.g., an explosion is occurring). Therefore, we
implemented an adaptive audio pulse extractor with the formula
proposed by K. Lopatka, J. Kotus & A. Czyzewski [28]. First, the
extractor uses a low-pass filter (f; = 125Hz2) to filter out mid-to-
high frequency signals if a standalone low-frequency effects (LFE)
channel is not provided. It then detects whether a bass pulse just
happened or not by the proposed formula

N
1
L=20- N ; (x[n] - Lnorm)? |, where

(1
Lnorm = 1, N = 48000Hz - 0.01 sec = 480
and an adaptive threshold,
. L(0) + m, if i=0
T(i) =)) . ()
1l-a-T(i—-1)+a-(L(i)+m), ifi>0

then sends the result to extractors. Moreover, the extractor could
also fetch the event direction if the surround sound is enabled
on the system running HapticSeer. Noteworthily, for those games
whose LFE capability is well-implemented, such as Battlefield 1,
only certain events may be rendered on the LFE channel. Therefore,
developers could exploit the pulse extractor for retrieving these
types of events precisely.

5.5 Event Detectors

HapticSeer supports a variety of detector models; however, we
focused on symbolic AI models as a proof-of-concept. We imple-
mented three types of symbolic AI models for the user study and
the evaluation.

5.5.1 Gunfire Detector. We implemented two variants of detectors
to detect player-triggered gun firing. The first variant listens to an
instance of OCR number extractor to fetch in-game HUD providing
bullet counts in players’ weapons. However, if the detector refer-
ences the OCR number extractor solely, it tends to misfire when the
player switches weapons and when a random flashing occurs on
the screen. Therefore, it also listens to an Xbox/OpenVR controller
input capturer for verifying players’ intentions. That is, it will only
report a weapon firing while the player is holding the trigger. By
doing so, it eliminates false-negative outputs most of the time.
On the other hand, not all games possess HUD proving bullet
counts. Therefore, we implemented another variant gunfire detector
relying on the bass pulse to detect gunfire. This variant of the

Yu-Hsin Lin, Yu-Wei Wang, Pin-Sung Ku, Yun-Ting Cheng, Yuan-Chih Hsu, Ching-Yi Tsai, and Mike Y. Chen

gunfire detector also listens to an Xbox/OpenVR controller input
capturer for verifying players’ intention.

5.5.2 Player Hit Detector. Though the health bar extractor could
estimate the value of generic health bars, health bars’ operating
logic varies from game to game. Moreover, for those games pos-
sessing damage indicators, the detector could listen to a damage
indicator extractor to fetch incoming direction. Therefore, a hit
detector should be tailored for games sharing the same logic. We
implemented two variants of detectors to detect player hurt events.
The first variant of the detector listens to health bar extractors only,
while the other variant listens to both a health bar detector and a
damage indicator extractor.

The first variant of the hit detector will report the message of
being hit and the difference of health points (HP) while finding
that the health bar extractor’s value is decreasing. However, this
approach tends to misfire when a random flashing occurs on the
screen, too. Therefore, we suggest that developers enable damage
indicators if their target game supports them. If the damage indi-
cator is referenced too, the player hit detector will only report the
player hit event while a damage indicator is emerging and an HP
loss occurs at almost the same time (50ms).

5.5.3 Inertia Detector. We implemented an inertia detector for rac-
ing games. The detector fetches speedometer readings by the OCR
number extractor to estimate the car’s local longitudinal accelera-
tion. Moreover, by listening to an Xbox controller input capturer,
the detector could estimate the car’s local lateral acceleration by
speedometer reading and states of analog sticks on the game con-
troller. However, because the car physics simulation is complex and
requires multiple magic constants [17] [24] to calculate correctly,
the detector only estimates cars’ lateral motion instead of calcu-
lating actual values. We found that the estimated value of lateral
acceleration tends to be too large in magnitude if calculated in this
way because we neglect the side slip of the car. Therefore, we clamp
the lateral acceleration value to [-20, 20] (2G) based on experience.
On the other hand, depending on the speedometer types of target
games, some extractors could only report the integer part of the
displayed speed, which may affect the longitudinal acceleration
estimation.

5.6 End-to-end System Correctness

To ensure that the target event was the only event of interest oc-
curring, we located a scene with predictable conditions. Moreover,
we selected a series of event detectors having 100% accuracy to
provide the ground truth for events. Given these two conditions,
the correctness could be verified.

5.6.1 Approach 1: Visual Channel Only. We conducted a test with
the HUD-based gun-firing detector (shown in 7-A) and the popular
VR shooter game, Half-Life: Alyx (HL:A). Its debug endpoint was
used to fetch the ground truth of every shot fired by the tester. We
loaded a testing map, activated an in-game cheat code for unlimited
ammunition supply, and then emptied the magazine/chamber of
three in-game firearms at the earliest for ten times (300/100/60
shots for each weapon). We found that HapticSeer could achieve
100% accuracy in this scenario, showing that the visual approach is
reliable.

HapticSeer: A Multi-channel, Black-box, Platform-agnostic
Approach to Detecting Video Game Events for Real-time Haptic Feedback

@ -

Gunfire Detector

—_—
TH] N
]
OCR Number Pulse Extractor
Extractor

1

o G

Xbox Controller Visual Capture
Input N e - -

I

1

_—————————————
N e e e e e e e

Audio Capture
~

CHI °21, May 8-13, 2021, Yokohama, Japan

-

Player Hit
Detector
ra - \ P -~ A
l'] it |
! 1 I
-)
| 1 I
| Health Bar I 1 Damagelndicator |
1 Extractor 11 Extractor I
| [I
| 1 t I
| 11 |
| (| I
A B R
| 11 I
| 11 I
Xbox Controller 1 Visual Capture Tl Yisual Capture 1
Input N e e e = _ N e e _7

Figure 6: Structures of (A) gunfire detector and (B) player hit detector in Battlefield 1. Some compo-
nents of A are disabled in the correctness evaluation. (Icon credits: by authors and also from flati-

con.com)

5.6.2 Approach 2: Audio Channel Only. We conducted a similar
test with the audio-based gun-firing detector and a popular first-
person shooter game, Battlefield 1. As shown in Figure 6-A, the
visual and controller I/O channels are disabled since we are only
interested in the audio channel correctness for now. However, this
target game does not provide an endpoint for retrieving game in-
formation. Therefore, we recorded the output and the game screen,
then performed a manual check of accuracy. We loaded a chapter
of the single-player campaign that forced the player to be a tank
gunner, then continuously firing for five minutes (63 shots). We
found that HapticSeer could also achieve 100% accuracy in this
scenario, showing that the audio approach is reliable.

5.7 Detection Results

Unlike the correctness validation for the whole system, we per-
formed an evaluation in natural settings to reach a better under-
standing of HapticSeer’s capability while being used as a developer
tool. We adopted the following two metrics to assess HapticSeer

e Sensitivity: the ability to correctly identify positive events.

Number of correctly identified in-game events

Number of all in-game events
e Precision: the ability to not generating false alarms.

Number of correctly identified in-game events

Number of reported in-game events

We tested our implemented detectors in natural settings with two
games, Half-Life: Alyx and Project CARS 2 because these two games
could provide the ground truth for automatic evaluations. For the
first game, Half-Life: Alyx, we fetched the ground truth of player
hit event and gun firing by the method mentioned above. Similarly,
Project CARS 2 provides the user with a telemetry API to read

memory data directly; thus, we exploited it to fetch the ground
truth of cars’ motion data.

Table 1: The detection result for case 1 (Half-Life: Alyx)

True False False
Positive Positive Negative (Recall)

Sensitivity Precision

Gunfire 442 17 32 0.932 0.963
Detector
Player Hit 34 15 24 0.586 0.694
Detector

5.7.1 Case 1: Half-Life: Alyx. Unlike the minimal instance of Hap-
ticSeer adopted in correctness validation, we activated the OpenVR
controller capturer to support the gunfire detector. Moreover, we
also activated the health bar extractor and the player hit detector
to get player-hit messages (shown in 7-A/B). For this evaluation,
we chose a war-raging scene to get shot and open fire intensively.
After three trials of gameplay (9.01 minutes in total, results are
shown in Table 1), HapticSeer reached a sensitivity score of 0.932,
and a precision score of 0.963 in the gunfire detection, being a
comparable result to that from our system correctness validation.
However, HapticSeer achieved unspectacular results in the player
hit detection, which has a sensitivity score of 0.586 and a precision
score of 0.694. The main reason may stem from the battlefield’s
chaotic nature, or a scene with too many objects sharing the same
color with the health bar (yellow in this case).

CHI 21, May 8-13, 2021, Yokohama, Japan

o
) =

Player Hit
Detector

(A] -
— W

Gunfire Detector

P -~ \ r’ \
I I
—— !

T, !

1 — 1 | |

1 1 | |

I OCR Number I | Health Bar |

I Extractor 1 : Extractor |

1 I 1

1 t 1 | 1 |

1 | | |

1 | | 1

1 1 1 |

1 1 1 |

1 1 1 1

OpenVR I Visual Capture | I Visual Capture ,'

Controller Input Mo L

Yu-Hsin Lin, Yu-Wei Wang, Pin-Sung Ku, Yun-Ting Cheng, Yuan-Chih Hsu, Ching-Yi Tsai, and Mike Y. Chen

[/ o

Q

Speed Detector

t

— (ol

Inertia Detector

- \ \
—— ———
021 021
I |
OCR Number OCR Number
Extractor

)

Xbox Controller
Input

1
1
I
I
1 Extractor
1
1
1
I
1
I
I
]

Figure 7: Structures of (A) gunfire detector and (B) player hit detector for Half-Life: Alyx, (C) iner-
tia detector and (D) speed detector for Project CARS 2. Some components of A are disabled in the
correctness evaluation. (Icon credits: by authors and also from flaticon.com)

We concluded that

e A more sophisticated feature extractor may be needed for
preprocessing raw data better.

o A further investigation of testing scenes should be performed
in advance when considering using HapticSeer as a developer
tool.

5.7.2 Case 2: Project CARS 2. Project CARS 2 is a racing simulator
developed by Slightly Mad Studios. It is famous for its realistic car
physics simulation and VR support. We activated an Xbox controller
input capturer, an OCR number extractor, and an inertia detector
(shown in Figure 7-C/D) to get the player’s local acceleration. We
chose Greenwood Karting Circuit as the testbed and drove a stan-
dard two-stroke go-kart because of its mechanical simplicity. The
gameplay result for six laps (5 minutes 42 seconds in total) is listed
in Figure 8. We find that lateral acceleration’s actual value is mostly
within the range of [-20, 20], matching our assumptions. However,
we also find that unable to get the actual value of current speed
does affect the estimation of longitudinal acceleration.

Speed Speed (Zoom-in)

Real Value
Estimated Value

Longitudinal Acceleration Longitudinal Acceleration (Zoom:-in)

kmih?

Real Value
10 Estimated Value | 10

Lateral Acceleration Lateral (Zoom-in)

2 w0

kmin?

-0 -1
Real Value
» Estimated Value | ~*°

E) 100 5 EQ gD Eg %40 945 950 W5 90 %5 970
sec

Figure 8: Outputs from Speed Detector and Inertia Detector
(Longitudinal, Lateral)

We conclude that

e The inertia detector can estimate cars’ motion, but it is inca-
pable of reporting actual values.

o The resolution of extractable features plays an essential role
in inferring events depending on them.

5.8 System Latency

For haptic devices, latency is an important issue that might harm
the immersion of experiences. To measure the internal latencies in
HapticSeer, we used a high-resolution timer provided by Microsoft
in C# that could record elapsed time in microseconds.

5.8.1 Feature Extractor Latency. Feature extraction is a stage that
computes data from capture channels. Thus the feature extraction
latency contains the computation time. To measure the latency,
we recorded capture timestamps and the timestamps that the com-
putation is completed, and we could calculate feature extraction
latency by subtracting these two timestamps. We found that the
latency to be 0.24-5.92 ms on average for all extractors, consisting
of a relatively small portion of the end-to-end latency.

5.8.2 Transmission Latency in Redis. After the computations of
feature extractors are completed, the results will be transmitted to
the event detectors via Redis. We tested the Redis server instance’s
latency by its integrated monitoring tool while playing Battlefield
1 with maxed-out settings. We found that the average latency to
be 0.04ms for 311930 samples, and the maximum latency value in
samples is 1ms, showing that the transmission latency in Redis is
almost negligible.

5.8.3 Event Detection Latency. In the detection stage, one or more
features would be collected for calculation. For example, calculat-
ing the centripetal force magnitude requires the velocity and the
slip angle of vehicles. To measure the latency, we recorded the
timestamp that received messages from Redis and the timestamp
that the detector sent results via Redis so that the latency would

HapticSeer: A Multi-channel, Black-box, Platform-agnostic
Approach to Detecting Video Game Events for Real-time Haptic Feedback

CHI °21, May 8-13, 2021, Yokohama, Japan

End-to-end Latency by Stage

[Battlefield 1] Continous Gun Firing
[Battlefield 1] Gun Firing
[Battlefield 1] Player Hit

[Half-Life: Alyx] Gun Firing
[Half-Life: Alyx] Player Hit

[Project CARS 2] Acceleration

20 ms (total)

27 ms (total)
26 ms (total)
28 ms (total)

30 ms (total)

25 ms (total)

0 10

= Render Loop = Time Window = Audio/Video Capture = Feature Extraction = Redis = Event Detection

20 20

Figure 9: Latencies for each stage of HapticSeer

be the difference between timestamps. We found that the average
latency to be 0.004-0.05 ms was too short to measure precisely. It is
because example detectors we made were all symbolic Al models,
which only consist of predefined rules. If learning-based models
were involved in this stage to solve complex tasks, such as object
detection with YOLOV4 [5], the latency in this stage will be slightly
higher but still fast enough for real-time detection.

5.8.4 End-to-end Latency. In our dataflow, when an event occurs,
it needs to wait for the next frame to render the event, and the
latency is the length of the render loop, depending on the channel’s
refresh rate. Our study adopted a 144Hz monitor, so the length of
the render loop for the visual approach is about 7ms. After the
data is rendered, the capturer might wait for the buffer to be filled,
which is the time window for the audio approach, as mentioned
previously. Then, acquiring data from channels is accompanied
with capture latency. The communication between capturer and
extractor exists in Redis’s transmission latency, and the extract
latency depends on the computation time of features. The more
complex feature requires more computation time. Subsequently,
features will be transmitted to event detectors via Redis, and the
event will be parsed eventually in event detectors. Finally, haptic
developers will receive events via Redis, and the haptic devices will
start to actuate. The end-to-end latency shown in Figure 9 consists
of all latencies mentioned above, and the latency is about 20-30ms
depending on which event to parse.

6 DEVELOPER FEEDBACK

We conducted a study to investigate our system’s usability and its
capability of integrating haptic devices with commercial games.
We recruited four participants who are familiar with developing
haptic devices to use HapticSeer. The participants have to assemble
HapticSeer from scratch with provided components, then were
asked to integrate one haptic device familiar to them, which are
either off-the-shelf products or self-made devices.

We asked for the age, gender, occupation in project teams, and
previous haptic works in the pre-experiment form. At the beginning
of the study, we briefly introduced the architecture of HapticSeer
and demonstrated all supported events to each participant. The
participant would then receive a tutorial for HapticSeer. After that,
we started to record the participants’ feedback and started the timer.

We recorded the elapsed time taken by participants to complete
the integration for quantifying the efficiency of utilizing our sys-
tem. Moreover, the participants were asked to fill a questionnaire
after the study. The questionnaire covers four topics of usability
question about HapticSeer, which consists of the quantitative part
and qualitative part for each topic. All of the questions could be
found in Table 2.

6.1 Apparatus

The study’s hardware setup consists of a gaming PC, which is the
same as we used in the latency test (A 16-Core computer with
32GB DDR4 memory), and four haptic devices provided by each
participant.

The participants were provided with three target games, Half-
Life: Alyx, Project CARS2, and Battlefield 1. We provided real-world
settings for the participants to test for each game, but we did not
force them to test in such environments.

6.2 Participants

Four novice researchers, three males, and one female, ages 24, 23,
23, and 23, were recruited for the study. Three participants have one
year of haptic research experience, while one person has three years
of experience. Three of the participants have previously published
haptic device papers at ACM CHI and SIGGRAPH conferences.
All participants have developed three haptic devices, except one
participant has developed only one haptic device.

The first participant chose to integrate bHaptics TACTOT [4]
with the player hit detector and the gun firing detector for Half-
Life: Alyx. TACTOL is a commercial haptic device that contains
amounts of vibration motors to create directional haptic feedback.
The participant spent 1 hour 40 minutes carrying through this
study.

Then the second participant chose to integrate bHaptics TAC-
TAL [4] with the player hit detector for Half-Life: Alyx. TACTAL is
a face cushion attached to several VR headsets such as HTC Vive
Pro. It contains several vibration motors to reproduces the feelings
of being head-shot or punched around their eye sockets for players.
The participant spent 45 minutes carrying through this study.

When the first two participants chose to use commercial devices,
the third participant brought a VR headset with air propulsion jets
attached to it to create directional force feedback. The participant

CHI 21, May 8-13, 2021, Yokohama, Japan

Yu-Hsin Lin, Yu-Wei Wang, Pin-Sung Ku, Yun-Ting Cheng, Yuan-Chih Hsu, Ching-Yi Tsai, and Mike Y. Chen

Table 2: A table for each topic of the questionnaire

Topics Quantitative Parts

(7-point Likert Scale)

Qualitative Parts

Easiness to Learn "I agree that the framework is easy to learn.

Effectiveness
devices with existing commercial games."
Latency
port haptic feedback.
Satisfaction

future.

"Why is (not) the framework easy to learn?"

"I agree that the system makes it easier integrating haptic "Why the system makes it (not) easier integrating haptic

devices with existing commercial games?"

"T agree that this system’s latency is low enough to sup- "Why I think this system’s latency (not) low enough to

support haptic feedback?"

"I would like to use it for integrating haptic devices in the "Why would (not) I like to use it for integrating haptic

devices in the future"
"What are the pros of the framework?"
"What are the cons of the framework?"

chose to integrate the device with the inertia detector for Project
CARS 2. The participant spent 1 hour 45 minutes carrying through
this study.

Lastly, the fourth participants brought a self-made device which
could provide high-frequency force feedback on hand. The partici-
pant chose to integrate his device with the gun firing detector for
Half-Life: Alyx. The participant spent 45m carrying through this
study.

6.3 Feedback Summary

6.3.1 Time to Complete. The average time for development with
HapticSeer is 1 hour and 13 minutes, which is a fairly short time
to develop a demo application. This result showed that HapticSeer
could reduce efforts to develop demo applications if the required
components are available.

The most experienced participant in .NET framework deploy-
ment spent the least time on development (45 minutes). He said,
"This system would enable me to do rapid prototyping with com-
mercial games in haptic research." The participant with the most
experience on haptic research also spent a short time (45 minutes
and 39 seconds) performing the integration.

However, the participant who had never developed a .NET ap-
plication spent the most time (1 hour 45 minutes) developing. She
stated that the unfamiliar ecosystem burdened her. "But I believe
that after getting familiar with HapticSeer, I can connect my device
to commercial games in a short time, less than a day. That would
save me much time." she further explained.

6.3.2 Easiness to Learn. HapticSeer scored an average score of
4.75 on this topic. A participant claimed that she got familiar with
HapticSeer after the first trial, but the document is hard to follow;
three participants also complained about the document.

According to their feedback, we believe that by refining tutorials
and redesigning a more user-friendly interface, HapticSeer could
be easier to use.

6.3.3 Effectiveness. HapticSeer scored an average score of 6.25 on
the easiness of integration, indicating that HapticSeer could make
the integration of haptic devices and commercial games easier
in these cases. One participant indicated, "It is useful for me to
integrate because it eliminates the need for modifying the game."

A participant also said, "This project could make some research-
grade haptic device more useful because they lack applications."
However, two participants suggested we design a graphical user
interface (GUI) for HapticSeer, and two participants also doubt
about the versatility of HapticSeer. A participant also questioned
the dependency issue among deprecated components in the future;
the participant also indicated that he might not use HapticSeer if
there are not available detectors meeting his requirement. Finally,
two participants also indicated the problem of false alarm.

Still, more user studies are required for future improvements, but
we believe that by refining tutorials and redesigning a more user-
friendly interface, HapticSeer could be easier to learn; therefore, it
could grow as an ecosystem and expand its versatility.

6.3.4 Latency. As for the latency, HapticSeer scored an average
score of 6.75, indicating that HapticSeer is capable of real-time
event detection. All participants reported no perceivable latency,
but one showed curiosity about whether the latency will become
too high when his device needs long preparation time.

6.3.5 Satisfaction. HapticSeer scored an average score of 6.25 on
satisfactory, indicating that the participants would like to use Hap-
ticSeer in the future, if available. Though supported games and
available components are limited now, the participant still showed
interesting in HapticSeer.

7 DISCUSSION AND LIMITATIONS
7.1 Scripted Experience

We have shown the feasibility of extracting game events from com-
mercial games to integrate haptic devices. With HapticSeer, haptic
developers can easily integrate their works to commercial games.
However, there are some works unsuitable for HapticSeer. Haptic
devices with longer charge time might be unsuitable because they
need to predict events in demo scenes. Some haptic devices require
long response time are also unsuitable because the latency of haptic
feedback will be too high. Scripted experiences are required for
these devices to prepare haptic feedback.

HapticSeer: A Multi-channel, Black-box, Platform-agnostic
Approach to Detecting Video Game Events for Real-time Haptic Feedback

7.2 Fine-grained Haptics

Currently, we support two haptic categories, impact and motion.
While some devices are not suitable due to their mechanisms, some
devices are not compatible with HapticSeer because of the haptic
feedback they try to simulate. For example, tactile events such as
the weights of game objects are unobservable through black-box
approaches, and the environment temperature and humidity cannot
be extracted directly from games. HapticSeer’s feature extractors
may need more sensory information input to extract fine-grained
haptic events, then inference by detectors.

7.3 Console Game

According to the survey conducted by Statista [20], PC is the most
interested platform for developers. However, several games are only
available for console platforms. To support console games, we need
to find different ways to capture each channel’s data from consoles
such as PlayStation 4. It is possible to capture screen frames via
capture cards, such as AVerMedia Live Gamer 4K - GC573. We have
tested the latency of capturing PlayStation 4 screen frames with
AVerMedia Live Gamer 4K - GC573, and the latency is about 40
milliseconds. Several off-the-shelf audio recording devices could
record the audio streams from Sony/Philips Digital Interface For-
mat (S/PDIF), the standard audio interface of PlayStation 4. When
it comes to the controller I/O, it is more complicated than other
channels. There are test pins on DualShock 4 [1], official controllers
for PlayStation 4, so it is possible to parse controller status from Uni-
versal Synchronous Asynchronous Receiver Transmitter (UART)
pins.

8 FUTURE WORK
8.1 Graphical User Interface

During our user study, several users reported that they prefer a
graphical user interface (GUI) for assembling HapticSeer. The proce-
dure of assembling HapticSeer is close to the dataflow programming;
a GUI like Pure Data Environment[19] will make HapticSeer system
easier to learn. A GUI with deliberately designed constraints can
also help prevent users from situations such as mismatching the
components or changing the system files by accident.

8.2 Open Platform

HapticSeer’s modular design makes its components interchange-
able. Therefore, we would like to build a toolkit to help users build
and share their components at ease, and let communications be-
tween developers be more active and direct. Developers can con-
tribute their high-accuracy detectors and high-speed extractors
to HapticSeer. As the components grow larger and diverse, the
limitation of supporting tactile events might be resolved.

8.3 Custom Controller Input & Analysis

Currently, HapticSeer only supports standard OpenVR input. How-
ever, to support fine-grained haptics, which needs precise skeleton
data and additional sensory inputs, we have to design a correspond-
ing API capable of processing sophisticated input messages and
redirecting them to applications. For example, controllers with

CHI 21, May 8-13, 2021, Yokohama, Japan

special functions, such as SHAPIO[14] and haptic gloves, need cor-
responding game systems to operate properly. If custom controller
1/0 can be processed by HapticSeer, unique controllers will be able
to integrate with various games with fewer limits to the game
systems.

9 ACKNOWLEDGEMENTS

This work is supported by the Ministry of Science and Technology
of Taiwan (MOST 109-2218-E-011-011, MOST 108-2628-E-002-006,
MOST 108-2218-E-011-027, MOST 107-2923-E-002-007) and Na-
tional Taiwan University. We thank participants and reviewers for
their feedback, especially during the COVID-19 pandemic.

REFERENCES

[1] Anonymous. 2020. DS4-BT - PS4 Developer Wiki. https://www.psdevwiki.com/
ps4/DS4-BT#UART_HCI

[2] Christiane Attig, Nadine Rauh, Thomas Franke, and Josef F. Krems. 2017. System
Latency Guidelines Then and Now - Is Zero Latency Really Considered Neces-
sary?. In Engineering Psychology and Cognitive Ergonomics: Cognition and Design,
Don Harris (Ed.). Springer International Publishing, Cham, 3-14.

[3] bHaptics. 2020. bHaptics Audio-to-Haptic. https://www.bhaptics.com/support/
faq/#Audio-to-Haptic

[4] bHaptics. 2020. bHaptics tactsuit. https://www.bhaptics.com/tactsuit/

[5] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. 2020. YOLOv4:
Optimal Speed and Accuracy of Object Detection. arXiv:cs.CV/2004.10934

[6] Mike Channell. 2020. The 20 best driving games of the last decade: 10-1. https://
www.topgear.com/car-news/electric/20-best-driving- games-last-decade-10-1.

[7] Mike Channell. 2020. The 20 best driving games of the last decade: 20-

11. https://www.topgear.com/car-news/electric/20-best-driving- games-last-

decade-20-11.

Daniel K. Chen, Jean-Baptiste Chossat, and Peter B. Shull. 2019. HaptiVec:

Presenting Haptic Feedback Vectors in Handheld Controllers Using Embedded

Tactile Pin Arrays. In Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems (CHI '19). Association for Computing Machinery, New York,

NY, USA, 1-11. https://doi.org/10.1145/3290605.3300401

Alfredo Cuzzocrea. 2009. Synopsis data structures for representing, querying,

and mining data streams. In Handbook of Research on Innovations in Database

Technologies and Applications: Current and Future Trends. IGI Global, Pennsylvania,

USA, 701-715.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-

rec. 2003. The Many Faces of Publish/Subscribe. ACM Comput. Surv. 35, 2 (June

2003), 114-131. https://doi.org/10.1145/857076.857078

ForceTubeVR. 2020. ForceTubeVR Documentation. https://www.protubevr.com/

img/cms/ForceTubeVR_Documentation.pdf

Samuel Horti GamesRadar Staff. 2020. The 25 best FPS games of all time. https:

//www.gamesradar.com/best-fps-games/.

Topi Kaaresoja, Stephen Brewster, and Vuokko Lantz. 2014. Towards the Tempo-

rally Perfect Virtual Button: Touch-Feedback Simultaneity and Perceived Quality

in Mobile Touchscreen Press Interactions. ACM Trans. Appl. Percept. 11, 2, Article

9 (June 2014), 25 pages. https://doi.org/10.1145/2611387

Hayato Kajiyama, Akifumi Inoue, and Tohru Hoshi. 2015. SHAPIO: Shape I/O

Controller for Video Games. In Proceedings of the 2015 Annual Symposium on

Computer-Human Interaction in Play (CHI PLAY ’15). Association for Comput-

ing Machinery, New York, NY, USA, 565-570. https://doi.org/10.1145/2793107.

2810318

Shi-Hong Liu, Pai-Chien Yen, Yi-Hsuan Mao, Yu-Hsin Lin, Erick Chandra, and

Mike Y. Chen. 2020. HeadBlaster: A Wearable Approach to Simulating Motion

Perception Using Head-Mounted Air Propulsion Jets. ACM Trans. Graph. 39, 4,

Article 84 (jul 2020), 12 pages. https://doi.org/10.1145/3386569.3392482

[16] Logitech. 2015. Logitech G920 & G29 Driving Force Steering Wheels & Ped-

als. https://www.logitechg.com/en-us/products/driving/driving-force-racing-

wheel html

G Mirone. 2010. Multi-body elastic simulation of a go-kart: Correlation between

frame stiffness and dynamic performance. International Journal of Automotive

Technology 11, 4 (2010), 461-469.

[18] Jakob Nielsen. 1993. Usability engineering. Morgan Kaufmann an imprint of

Academic Press, a Harcourt Science and Technology Company, Burlington, Mas-

sachusetts.

Miller Puckette. 1996. Pure Data. In Proceedings of the second intercollege computer

music concerts. Self-published, Tachikawa, Japan, 37-41.

Felix Richter. 2019. The Most Important Gaming Platforms in 2019. https:

//www.statista.com/chart/4527/game-developers-platform-preferences/

&

[

[10

[11

[12

[13

[14

[15

[17

[19

)
=

https://www.psdevwiki.com/ps4/DS4-BT#UART_HCI
https://www.psdevwiki.com/ps4/DS4-BT#UART_HCI
https://www.bhaptics.com/support/faq/#Audio-to-Haptic
https://www.bhaptics.com/support/faq/#Audio-to-Haptic
https://www.bhaptics.com/tactsuit/
https://arxiv.org/abs/cs.CV/2004.10934
https://www.topgear.com/car-news/electric/20-best-driving-games-last-decade-10-1
https://www.topgear.com/car-news/electric/20-best-driving-games-last-decade-10-1
https://www.topgear.com/car-news/electric/20-best-driving-games-last-decade-20-11
https://www.topgear.com/car-news/electric/20-best-driving-games-last-decade-20-11
https://doi.org/10.1145/3290605.3300401
https://doi.org/10.1145/857076.857078
https://www.protubevr.com/img/cms/ForceTubeVR_Documentation.pdf
https://www.protubevr.com/img/cms/ForceTubeVR_Documentation.pdf
https://www.gamesradar.com/best-fps-games/
https://www.gamesradar.com/best-fps-games/
https://doi.org/10.1145/2611387
https://doi.org/10.1145/2793107.2810318
https://doi.org/10.1145/2793107.2810318
https://doi.org/10.1145/3386569.3392482
https://www.logitechg.com/en-us/products/driving/driving-force-racing-wheel.html
https://www.logitechg.com/en-us/products/driving/driving-force-racing-wheel.html
https://www.statista.com/chart/4527/game-developers-platform-preferences/
https://www.statista.com/chart/4527/game-developers-platform-preferences/

CHI 21, May 8-13, 2021, Yokohama, Japan Yu-Hsin Lin, Yu-Wei Wang, Pin-Sung Ku, Yun-Ting Cheng, Yuan-Chih Hsu, Ching-Yi Tsai, and Mike Y. Chen

[21] SimRacingStudio. 2020. Sim Racing Studio. https://www.simracingstudio.com/ 429 (12 2015). https://doi.org/10.1007/s11042-015-3105-4
[22] Freepik Company S.L. 2020. Flaticon, the largest database of free vector icons.

https://www.flaticon.com/
[23] R. Smith. 2007. An Overview of the Tesseract OCR Engine. In Ninth International A ICON CREDITS
Conference on Document Analysis and Recognition (ICDAR 2007), Vol. 2. IEEE,
Parana, Brazil, 629-633. https://doi.org/10.1109/ICDAR.2007.4376991
Monstrous Software. 2003. Car Physics for Games. https://asawicki.info/Mirror/ ° Fig. 1. Icons made by smalllikeart, iconixar and Freepik

CarPhysicsforGames/CarPhysicsforGames.html . iy .
[25] Valve. 2020. Steam Hardware and Software Survey. https://store.steampowered. ° Flg' 3. Icons made by Good Ware, itim2101, Smashicons and

Icons from flaticon.com[22] are used in the following figures:
[24

com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam/ Freepik

[26] Xbox. 2016. Xbox Wireless Controller. https://www.xbox.com/en-US/ ° Fig. 4. Icons made by smalllikeart, Nikita Golubev, Pixel
accessories/controllers/xbox-wireless-controller .

[27] Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli: Using GUI perfeCt and Freeplk
Screenshots for Search and Automation. In Proceedings of the 22nd Annual ACM e Fig. 5. Icons made by smalllikeart and Freepik
Symposium on User Interface Software and Technology (UIST "09). Association for e Fig. 6. Icons made by smalllikeart. Nikita Golubev. Pixel
Computing Machinery, New York, NY, USA, 183-192. https://doi.org/10.1145/ R ? ’
1622176.1622213 perfect and Freepik

[28] Kuba Lopatka, Jézef Kotus, and Andrzej Czyzewski. 2015. Detection, classification ° Fig. 7. Icons made by smalllikeart, Nikita Golubev, Pixel

and localization of acoustic events in the presence of background noise for
acoustic surveillance of hazardous situations. Multimedia Tools and Applications

perfect and Freepik

https://www.simracingstudio.com/
https://www.flaticon.com/
https://doi.org/10.1109/ICDAR.2007.4376991
https://asawicki.info/Mirror/Car Physics for Games/Car Physics for Games.html
https://asawicki.info/Mirror/Car Physics for Games/Car Physics for Games.html
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam/
https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam/
https://www.xbox.com/en-US/accessories/controllers/xbox-wireless-controller
https://www.xbox.com/en-US/accessories/controllers/xbox-wireless-controller
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1145/1622176.1622213
https://doi.org/10.1007/s11042-015-3105-4

	Abstract
	1 Introduction
	2 Related Work
	2.1 Explicit API Approach
	2.2 Black-box Approach

	3 Approach
	3.1 Data Streams
	3.2 Design Patterns
	3.3 Latency Threshold Requirement

	4 System Design
	4.1 Message Broker
	4.2 Components

	5 Implementation
	5.1 DirectX Capturer
	5.2 WASAPI Capturer
	5.3 Controller I/O Capturers
	5.4 Feature Extractors
	5.5 Event Detectors
	5.6 End-to-end System Correctness
	5.7 Detection Results
	5.8 System Latency

	6 Developer Feedback
	6.1 Apparatus
	6.2 Participants
	6.3 Feedback Summary

	7 Discussion and Limitations
	7.1 Scripted Experience
	7.2 Fine-grained Haptics
	7.3 Console Game

	8 Future Work
	8.1 Graphical User Interface
	8.2 Open Platform
	8.3 Custom Controller Input & Analysis

	9 ACKNOWLEDGEMENTS
	References
	A Icon Credits

