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RoomDreaming: Generative-AI Approach to Facilitating
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Figure 1: RoomDreaming, a generative AI tool designed to facilitate iterative, preliminary interior design exploration by creating

photo-realistic designs based on the actual room layout and personal preferences indicated through likes and bookmarks
with flexible creative control. The figure showcases samples from a homeowner-designer pair (G2) in our study, who used

RoomDreaming for 11 iterations and reviewed 206 designs in one hour.

ABSTRACT

Interior design aims to create aesthetically pleasing and functional
environments within an architectural space. For a simple room, the
preliminary design exploration currently takes multiple meetings
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and days of work for interior designers to incorporate homeowners’
personal preferences through layout, furnishings, form, colors, and
materials. We present RoomDreaming, a generative AI-based ap-
proach designed to facilitate preliminary interior design exploration.
It empowers owners and designers to rapidly and efficiently iter-
ate through a broad range of AI-generated, photo-realistic design
alternatives, each uniquely tailored to fit actual space layouts and in-
dividual design preferences. We conducted a series of formative and
summative studies with a total of 18 homeowners and 20 interior
designers to help design, improve, and evaluate RoomDreaming.
Owners reported that RoomDreaming effectively increased the
breadth and depth of design exploration with higher efficiency and
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satisfaction. Designers reported that one hour of collaborative de-
signing with RoomDreaming yielded results comparable to several
days of traditional owner-designer meetings, plus days to weeks
worth of designer work to develop and refine designs.
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1 INTRODUCTION

Interior design, architecture, and landscaping collaboratively create
a harmonious and functional built environment to enhance the
quality of life of people and connect them to the natural environ-
ment [10]. Specifically, interior design aims to create aesthetically
pleasing and functional environments within an architectural space.
It involves planning the layout and designing the furnishings, fin-
ishes, and lighting through characteristics such as form, shape,
color, texture, and materials to reflect the desires and preferences
of users of the space [9].

The interior design process comprises the following three itera-
tive stages, as described by one of the authoritative textbooks of
interior design, Interior Design Illustrated (Ching, 2018) [9]:
(1) Programming understands and analyzes user requirements, ac-

tivity needs, furnishings requirements, original space, and de-
sired qualities fitting to the architectural space.

(2) Plan arrangement develops and evaluates different design alter-
natives with specific furnishings, finishes, and lighting in 3D to
iteratively progress from divergent possibilities to converge on
a specific, final design. The arrangement of shapes and forms
in space should respond to functional and aesthetical criteria
by iteratively evaluating and refining the different design al-
ternatives to decide on design characteristics (e.g., form, shape,
color, texture, and material) for each design element.

(3) Implementation prepares detailed construction drawings, in-
cluding floor plans, elevations, and sections, finalizes specifica-
tions for interior finishing materials, and physically completes
the construction.

"While the initial stages of the design process encourage divergent
thinking about the problem, the design development phase requires a
convergent focus on a specific design solution." [9]

For the plan arrangement stage, homeowners explore design
possibilities through self-guided exploration, designer-assisted explo-
ration, or both. For self-guided exploration, owners collect ideas and
reference images from sources such as Pinterest, search engines,
designers’ websites, and real-life experiences. However, existing
reference designs do not match the actual space being designed
and do not allow users to combine ideas to iteratively refine and
explore the design space further.

With the advancement of generative-AI (Artificial Intelligence)
for images and text, particularly the release of Stable Diffusion and

ChatGPT in 2022, several generative-AI products have launched
that allow a photo or 3D model of a space be used as input and then
generate reference designs in a variety of styles, such as InteriorAI4,
RoomGPT5, REimagineHome6, SpacelyAI7, and MagicRoomAI 8.
While generating images that match the actual space is a critical
first step forward, existing approaches lack the ability for users to
specify preferences to iterate further, which is necessary to help
owners to explore the design space, make decisions, and for design
exploration to converge toward a final design.

For designer-assisted exploration, interior designers must thor-
oughly understand owners’ requirements and preferences, in order
to develop design alternatives towards a final design. This is a time-
consuming and labor-intensive process that typically starts with an
initial owner-designer meeting to gather requirements and prefer-
ences for programming and plan arrangement, followed by multiple
cycles of: 1) designers develop and propose design alternatives and
2) owner-designer design reviewmeetings, which are repeated until
converging on a final design. To improve the efficiency of devel-
oping design alternatives, researchers and commercial products
have explored algorithms and AI to provide recommendations for
specific design elements, characteristics, 2D floor plans, and 3D
models [6–8, 29–31, 41, 44, 47, 51]. While these approaches only
generate a specific design aspect of the entire space, they helped in-
spire the more recent generative-AI based approaches that generate
entire designs for a space.

Evenwith all of the existing CAD tools, AI products, and research
prototypes, the design iterations exploring the design alternatives
for a simple space require days to weeks of designers’ work plus
owner-designer meetings for an overall typical time span of 6 to 15
weeks [16, 27, 28, 32, 33]. Furthermore, time and budget constraints
limit the design exploration in terms of both the number of alterna-
tives and the number of design iterations, resulting in final designs
that may not fully reflect and satisfy owners’ preferences.

To improve the efficiency and effectiveness of the early stages of
the interior design process, we present RoomDreaming, a generative-
AI approach to facilitate preliminary, iterative interior design ex-
ploration by generating photo-realistic designs based on the actual
space layout and enabling users to iterate through vast design al-
ternatives based on indicated preferences. We conducted a series of
two formative studies and three summative studies with a combined
total of 18 homeowners and 20 interior designers, shown in Table 1,
to understand the needs of owners and interior designers, and iter-
atively improved the RoomDreaming system, which we developed
using OpenAI GPT API, Stable Diffusion [1], and ControlNet [50].
Based on the feedback from these studies, our prototype uses Likes
and Bookmarks to capture user preferences, and additionally sup-
ports User Requirements and New Design Directions for more precise
control of the designs.

Compared to designer-assisted exploration that typically iterates
2~3 times through several design proposals over the span of several
weeks, RoomDreaming’s generative-AI approach enables users to
rapidly iterate as many times as needed through hundreds of de-
signs. As shown in Figure 1, one of the owner-designer pairs from
our co-design study used RoomDreaming for 11 design iterations
and reviewed 206 design alternatives in 1 hour. The interior design-
ers from the study, who had an average of 8.3 years of professional
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Table 1: The 5 user studies conducted for designing, improving, and evaluating this research and assessing the quality of

AI-generated designs, with a combined total of 18 owners and 20 interior designers.

User Study Duration (min) Participants

1. Formative Study 90 3 Designers + 3 Owners
2. Assessment of AI-generated Design Quality 60 8 Designers
3. Self-guided Exploration 120 12 Owners
4. System Improvement 120 6 Designers
5. Co-design Exploration 120 3 Designers + 3 Owners

design experience, estimated that co-designing with RoomDream-
ing for 1 hour achieved the equivalent of several days of traditional
owner-designer meetings, plus days to weeks of designer work to
develop and refine designs.

Our key contributions include:
• Developing a generative AI approach to support iterative, pre-

liminary interior design exploration.
• Designing, implementing, and iterative refining a generative-
AI system, informed by a series of formative and summative
studies with a combined total of 18 homeowners and 20 interior
designers.

• Empowering owners and designers to rapidly iterate through a
broad range of AI-generated, photo-realistic design alternatives,
each uniquely tailored to fit actual space layouts and individual
design preferences. This enhances both the breadth and depth of
design exploration, as well as overall efficiency and satisfaction..

2 RELATEDWORK

2.1 Generative-AI Interior Design Tools

With the recent, rapid advancement in AI, there has been grow-
ing discussion about human-AI interaction [2, 42], particularly
with the release of AI image generators such as Stable Diffusion1,
Midjourney2, and DALL-E3 in 2022. As visual representation is
critical for understanding personal preferences for interior de-
sign [11, 38], several generative AI products for interior design
have been launched in 2023, including InteriorAI4, RoomGPT5,
REimagineHome6, SpacelyAI7, and MagicRoomAI8.

RoomGPT5 takes an input image of a room and generates de-
tailed renditions based on user style preferences. Though users
can choose from a wide variety of styles for image regeneration,
they cannot specify preferences regarding design characteristics or
elements, and is only given one design at a time that is not based
on the users’ preference from prior generated designs. Interior AI4
provides 4 transformation methods: Virtual Staging for detecting
construction to avoid altering them, Interior Design for change in
construction, Freestyle for randomization, and 360° Panorama for
immersion. Users can select a style from the provided list, and is
given a maximum of 9 rendered images per batch generation. Simi-
lar to RoomGPT, users are unable to specify design requirements.
1Stable Diffusion https://stablediffusionweb.com/
2Midjourney https://www.midjourney.com/
3DALL-E-2 https://openai.com/dall-e-2/
4InteriorAI https://interiorai.com/
5RoomGPT https://www.roomgpt.io/
6REimagineHome https://www.reimaginehome.ai/
7SpacelyAI https://www.spacely.ai/
8MagicRoomAI https://magicroom.ai/

Additionally, though users can continuously regenerate new im-
ages, they are not based on user preferences. MagicRoomAI8 offers
theme and room type options, a designer’s name to incorporate
their design style, and a text description. Though regeneration is
possible, users cannot influence the direction of the next regenera-
tion. In SpacelyAI7, users can render a 3D model or a basic sketch
of a room. The style can be chosen from SpacelyAI’s list, or the
user can upload their own image of a style they would like to emu-
late, allowing for great flexibility. Users can also select their own
color palette or replace objects in the image after generation for a
different look. However, while users can upload their own stylis-
tic references, they cannot state preferred design elements before
generation.

For precise modification, REimagineHome6 has a masking func-
tion to select which specific areas of the room to alter. They can also
enter their own instructions regarding design characteristics and
color preferences. While this system allows the user to customize
their design, it is only focused on one design direction and does
not allow users to explore other design variations and alternatives
in the same design direction.

Although these generative-AI tools support the generation of
initial designs based on a photo of a space, they do not support
iterative design exploration, which RoomDreaming has been de-
signed to empower. Furthermore, RoomDreaming provides users
with control over the ratio of New Design Directions, which is fun-
damental to the divergence and convergence process of creative
design exploration.

2.2 Computer Aided Design Tools for Interior

Design Exploration

Computer-aided design (CAD) system has played a pivotal role in
the modernization of interior design. These systems can be posi-
tioned on a spectrum that ranges from direct manipulation to fully
automatic design. [48] Meanwhile, Generative Design(GD) is used
to describe computer-aided design (CAD) systems that offer tools
to modify designs beyond directly manipulating individual design
elements. [48]

There are several research and commercial applications of CAD
for interior design, facilitating the efficiency of the design devel-
opment [13, 20, 21, 23, 36, 37, 43]. For example, AutoCAD9 is one
of the most popular CAD software that acts as a complete tool for
automating graphical work (e.g. floor plans, sections, elevations,
and construction drawings). It supports integration with other 3D
modeling systems, broadening its applications that range from
9AutoCAD https://www.autodesk.com/products/autocad/overview/
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static drawings to object interaction [23]. However, despite many
methods proposed by researchers for the use of CAD in early-stage
conceptual design, these still require significant user input and are
mostly used in the final stages of design [48].

2.3 Generative Design

"Generative design (GD) as a rule-driven iterative design process
is based on algorithmic and parametric modeling to automatically
explore, iterate, and optimise design possibilities by defining high-level
constraints and goals." [26] Different from the "rule-based" approach
in the AI domain, "Generative Design" employs a "rule-driven"
process. This involves setting high-level parameters and constraints
to guide the automated exploration, iteration, and optimization of
design possibilities. In contrast, "rule-based" AI relies on a fixed set
of pre-defined rules to generate outputs.

Recently, researchers have explored the utilization of algorithms
and AI based on generative design to provide interior design rec-
ommendations, covering the selection and arrangement of design
elements and characteristics, as well as 2D floor plans, and 3D
models [6–8, 29–31, 41, 44, 47, 51].

Because designers often have intuition and knowledge cultivated
from experience, there are aspects of design that they consider and
merge into a design that may not fall within an owner’s ability or
consideration. These aspects are often necessary to ensure a design
that is aesthetically pleasing, harmonious, and other design princi-
ples. [9]. One aspect is selecting color attributes for characteristics
in a design [7] and pairing these colors together [51], as colors
are important to homeowners because of their effect on mood and
emotion. While professional designers have the experience and
intuition to pair colors aesthetically and comfortably, homeowners
can find this difficult.

Chen et al. [7] used a statistical model to analyze color combi-
nations in labeled interior design scenes. Their method compared
favorably to random assignments and the established Magic Deco-
rator tool in user studies. Zhu et al. [51] employed deep learning to
learn from professional photos and renderings. Their system gen-
erated perceptually convincing color schemes, preferred by users
over professional designers in most cases, and significantly faster.
Both approaches show promise for efficient and user-friendly color
recommendations for interior design.

Another aspect is determining compatibility between furniture
pieces [44], which can help a scene look more harmonious but is a
complex task that requires intuition born from experience. Using a
deep learning network, style can be classified and modeled for style-
compatible and consistent scenes. Two other aspects that can appear
mysterious to homeowners are assigning textures and materials
to elements [8], and color-material furnishing pairing [30]. The
former is a task that designers complete based on experience, while
the latter is referred to by the authors as "a ’black-box’ for interior
designers" because designers find it difficult to explain the rules
behind their decisions that are fueled by intuition. Both tasks can
be difficult for homeowners, who have less knowledge in interior
design. To solve this problem, these two systems have "guidelines"
or analysis framework that emulates a designer’s experience and
intuition to produce plausible and cohesive suggestions for users.
Coming up with original ideas [29] is an aspect that is also difficult

for homeowners because of their lack of experience, which prevents
them from conveying the feeling they want their design to emanate.
Using input from the user that specifies shape, material, and color,
this system uses amachine learning algorithm to select and generate
the appropriate interior style.

While these tools are effective for specific subsets of design, sup-
porting users to explore all the design elements together in each
design alternative is essential, as visual relationships among the
design elements are shaped by principles like proportion, scale, bal-
ance, harmony, unity and variety, rhythm, and emphasis, arranging
elements into recognizable patterns, allowing for visual order while
accommodating function and purpose within the space [9]. These
have inspired generative-AI based tools, which are capable of gen-
erating all the design elements of a space through training models
on a large number of existing designs, which RoomDreaming uses.

3 STUDY #1: FORMATIVE STUDY

To gain insight into current interior design processes and challenges,
we conducted a formative study by interviewing interior designers
and homeowners who have recently collaborated with interior
designers to complete residential projects.

3.1 Study Design, Procedure, and Participants

We designed a semi-structured interview focusing on the "program-
ming" and "plan arrangement" stages of interior design, covering:
1) overall design process; 2) communication of owner requirements
and preferences; and 3) design exploration and iteration.

We recruited a total of 6 participants, 3 homeowners and 3 inte-
rior designers, comprising 3 males and 3 females with ages ranging
from 24 to 52. The 3 interior designers (D1~D3) have professional
interior design experience of 4, 6, and 5 years, and specialize in
residential, commercial, and workspace design, and the three home-
owners (O1~O3) have completed between 1~3 residential projects.

Each participant was asked to bring their most-recently com-
pleted interior design projects, which included 5 residential and 1
commercial designs. Each interview took about 90 minutes.

3.2 Findings

The interviewers all mentioned owners’ self-guided design explo-
ration in addition to designer-guided design exploration, and the
key frictions and pain points are as follows:

Significant effort needed for owners to collect preferred
reference designs. Homeowners spent “one week” (O2) to “10~15
days” (O3) searching for reference designs through various sources,
including designers’ portfolio websites, Pinterest, Google Image
Search, YouTube, interior design books, and personal photos of
the interior designs they encountered, such as “prepared lots of the
photos I took in the several hostels and hotels around the world to
assist the conversation with designers.” (O1)

Reference designs not matching the room layout. “After dis-
covering a design or material I like, I try to search with specific key-
words for similar designs that align with my room layout with little
success.” (O1) “I spent lots of time trying to find reference designs with
a similar room layout.” (O3)
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Inability to explore the integration of multiple design ideas.
Homeowners currently have to imagine how multiple design ideas
integrate together. Furthermore, they are unable evaluate the fea-
sibility and compatibility of their design ideas, such that the over-
all design satisfy design principles, like proportion, scale, and har-
mony [9]. As mentioned by one couple, “we found many possible
design ideas for our future home using Pinterest, but we were unsure
how they fit together and couldn’t make decisions.” (O3) Designers
commented that “clients commonly prepare several reference design
images and ask us to merge them, but we need to explain that the
integration may not be aesthetically pleasing or may conflicts with
other preferences clients just mentioned.” (D1)

Verbal description alone, without visual, cannot precisely
convey design preferences. In order for designers to understand
owners’ high-level design directions and preferences, designers uti-
lize diverse approaches to assist homeowners in articulating their
preferences and requirements, including thumbs up/down ques-
tions about reference designs, storytelling, creating draft drawings,
and interviewing owners about their hobbies, habits, and daily life.
In addition to the words in the answers, designers report the impor-
tance in observing their body language and emotions. Even with
the above techniques, “it’s common that we are "guessing" clients’
preference on the design material, lighting, and so on, based on their
verbal descriptions.” (D3)

Furthermore, words often fail to convey design preferences, lead-
ing to errors in communication and understanding. One owner
expressed frustration in that “I didn’t know the precise keywords to
convey the design styles I liked, but once I saw the materials that the
designer selected in the final rendering, I immediately knew that I
didn’t like some of them.” (O1)

Limited number of iterations and design alternatives (pro-
posals) developed by designers. In the preliminary design process,
two to three 2~3-hour owner-designer meetings took place with
designers creating 3~9 design alternatives over 3~5 weeks. A design
alternative in this phase included: 1) a floor plan, 2) existing refer-
ence design images, and 3) a small number of 3D images rendered
for the project. Because 3D modeling is time-consuming and costly,
reference images unrelated to the physical room layout are often
used to convey ideas and to support the discussion. “The average
number of design proposals in the whole design process may vary
depending on several factors, such as the scope of work. For this case,
with a total of three rooms in this house, we met with the clients 3
times and provided a total of 6 design alternatives in three weeks to
converge to the final design.” (D1) “Regarding the meetings, if there are
large changes in design directions, then the designer would redraw the
designs. Otherwise, after 2 meetings with each 2~3 design proposals,
the direction of the design was determined. Overall, I saw a total of
about 3 rendered images.” (O2)

The cumulative impact of these factors makes it challenging for
homeowners to to fully explore their design ideas and to convey
their design preferences thoroughly to designers.

4 SYSTEM DESIGN AND IMPLEMENTATION

Our insight is to leverage generative-AI’s ability to rapidly generate
vast design alternatives, and to tailored it to support the inherent

iterative nature of early-stage interior design exploration. Our goal
is to empower users to efficiently broaden the scope and depth of
their design exploration and to facilitate communication, with the
following system design goals:
• High-quality designs: generating design alternatives based on

the physical room layout that match user requirements, includ-
ing structural, functional, and aesthetics. The generated images
should be photo-realistic to help users experiment and assess
design ideas.

• Breadth: expanding breadth of exploration by introducing new
design directions, and by introducing variations within a pre-
ferred design direction.

• Depth: supporting rapid iteration and generation of new designs
based on user-indicated preferences.

4.1 Web-based User Interface

For the user interface, we aim to achieve the "low floor" and "high
ceiling" concepts proposed by Seymour Papert [19], that provides
easy ways for novices to get started (low floor) but also ways for
them to work on increasingly sophisticated designs over time (high
ceiling):
• Low-floor: users only need to provide a photo of the room to

start generating designs. User preferences are collected through
familiar Like and Bookmark interactions.

• High-ceiling: optional guidance of AI generation through key-
words and UI controls.
Figure 2 shows a screenshot of the RoomDreaming UI for brows-

ing design alternatives, expressing preferences via Likes, saving
designs via Bookmarks, and guidance of AI generation by provid-
ing requirement keywords and controlling the ratio of New Design
Directions via sliders.

The interface is designed to enable users to easily browse and
generate vast new design alternatives to gain a deeper understand-
ing of their design preferences (both likes and dislikes) through
successive iterations. This iterative process allows users to gradu-
ally refine their preferred designs while retaining the opportunity
to learn from additional design suggestions.

4.2 System Overview

Figure 3 provides a high-level overview of the system, showing
three main components: 1) web-based user interface; 2) backend
to generate design alternatives, consisting of an Image Analyzer,
Prompt Composer, and Design Generator ; and 3) Large language
model (LLM) for providing new design directions. The web UI
generation is implemented using Gradio10, a Python package for
integrating machine learning models into web interfaces.

4.2.1 Understanding Room Elements and Spatial Information. To
lower the barrier to start generating designs, RoomDreaming does
not require a 3D model of the space, and can instead use a photo
of the room as input. The room can be fully furnished spaces, like
existing rooms, or empty spaces awaiting to be furnished. The
Image Analyzer aims to understand elements, which are the existing
element types in the room (e.g. window), and spatial information,
which are the scale, shape, and relationship between each object
10Gradio https://www.gradio.app/
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Figure 2: Screenshot of RoomDreaming’s web-based user interface, enabling users to browse vast number of design alternatives

and indicate preferences through A) Likes and B) Bookmarks. To provide additional control over the design generation, users

can specify C) Requirements through keywords, and adjust D) ratio of New Design Directions.

Figure 3: System architecture overview, showing 1) web-based user interface; 2) backend to generate design alternatives,

consisting of an Image Analyzer, Prompt Composer, and Design Generator; and 3) Large language model (LLM), currently via API.

in the room (e.g. size and position of the window relative to the
space).

To understand elements, we use the segmentation estimators
UPerNetModel11 based onUnified Perceptual Parsing (UPerNet) [46],
which mimics human vision by categorizing and detecting objects
11UPerNet Model https://huggingface.co/docs/transformers/model_doc/upernet
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within scenes, and the ADE20K image dataset12, which is a com-
prehensive database with objects annotations to provide semantic
information about the elements in the space. To understand spatial
information, we use the estimator model res10113. This estimator is
based on the widely adopted technique known as Monocular Depth
Estimation14, which calculates the distance of each pixel in a 2D
image from the viewer’s perspective, creating a depth map of the
3D space. Figure 4(a) shows an example of the segmentation map
and spatial map generated from an input photo.

4.2.2 Generating Designs based on the Room. To generate photo-
realistic interior design alternatives based on the segmentation
and depth maps, we employed Stable Diffusion [1], a generative-AI
model that produces unique images from text and image prompts,
and ControlNet [50], a neural network structure capable of con-
ditionally controlling diffusion models during image generation.
Specifically, we integrate the depth15 and segmentation16 Con-
trolNet models to facilitate multiple conditioning controls. These
controls operate on the previous estimators’ depth and segmen-
tation maps throughout the diffusion model’s image generation
process to ensure the output images are based on the given room
layout. For design image generation, we use a diffusion model 17
that has been fine-tuned for interior designs and highly rated on
the AI community, CIVITAI 18.

To support independent design exploration of varying adherence
levels to existing elements and spatial information, we allow users to
independently specify the adherence levels, implemented using the
Control Weight parameter in ControlNet that ranges from 0 to
1. A lower weight results in less adherence to the input room, while
a higher weight generates designs more closely aligned with the
input room. Figure 4(b) shows examples of low vs. high adherence
levels.

4.2.3 Image Generation Latency. We evaluated the latency of the
key components, by averaging over 100 trials. Local PC has an
AMD R9 3950X 16-core CPU + Nvidia RTX 4070 GPU.
• 6.1s for image analysis of depth and segmentation map, a one-

time computation at the beginning of each project on PC.
• 11.8s for GPT API to generate a batch of 5 new design directions

prompts. Pre-fetching and caching can eliminate this latency.
• 3.21s/image for design image generation using Stable Diffusion

and ControlNet on an Nvidia A10G (Large instance) on Hugging-
face, and 3.35s on a PC with Nvidia RTX 4070.

4.2.4 Expanding Breadth of Exploration. Studies of text-to-image
generative AI have shown that users grappled with a "trial and er-
ror" approach, inefficiently modifying prompts and brainstorming
to generate optimal descriptions for new images [15, 49]. In the
12ADE20K Website https://groups.csail.mit.edu/vision/datasets/ADE20K/
13Annotators-res101.pth https://huggingface.co/lllyasviel/Annotators/blob/main/
res101.pth
14Monocular Depth Estimation https://paperswithcode.com/task/monocular-depth-
estimation
15Depth ControlNet Model https://huggingface.co/lllyasviel/control_v11f1p_sd15_
depth
16Segmentation ControlNet Model https://huggingface.co/lllyasviel/control_v11p_
sd15_seg
17XSarchitectural-InteriorDesign-ForXSLora-V11 https://civitai.com/models/28112/
xsarchitectural-interiordesign-forxslora
18CIVITAI https://civitai.com/

context of interior design, homeowners from our formative study
reported limited knowledge of possible design styles and limited
terminology to express what they desire. Therefore, instead of gen-
erating design only within the scope of user-specified prompts,
RoomDreaming’s Prompt Composer leverages Large Language Mod-
els (LLM) to expand prompts to explore new design directions.

We use OpenAI GPT API, gpt-3.5-turbo19 to generate prompts
using GPT instructions based on prior work on instruction de-
sign [5, 14, 17] and for prompt structure suitable for interior de-
sign generation using Stable Diffusion [3, 18, 25, 45]. The prompts
from GPT are appended after user specified requirements, as this
prompt order gives the design directions a lower priority for Stable
Diffusion image generation. To maintain divergence in the gen-
erated design directions, we leveraged GPT’s conversation his-
tory and GPT API parameters with default presence_penalty,
temperature:1.2, and top_p:1which level is needed to pro-
duce prompts suitable for Stable Diffusion and maintain the diver-
gence in each descriptor.

4.2.5 Supporting Depth of Exploration. Users indicate their prefer-
ence via Likes and Bookmarks, as shown in Figure 2(a)(b). The LLM
portion of prompts corresponding to the liked and bookmarked de-
signs are stored as preferred prompts. To enable users to control the
exploration process, we provide a slider to control the ratio of New
Design Directions, as shown in Figure 2(d). As an example, when
the ratio of New Design Directions is set to 80% when generating the
next batch of designs, 20% of prompts will be randomly sampled
from the user’s preferred prompts, if any, with the remaining 80%
newly generated by LLM. When re-using a preferred prompt, we
use a random seed to generate new design variations within the
design direction.

5 STUDY #2: QUALITY ASSESSMENT OF

AI-GENERATED INTERIOR DESIGNS

While numerous studies have assessed the quality and performance
of Stable Diffusion with ControlNet [34, 35, 39, 50], no prior work
has assessed the quality of generated images in the context of
interior design.

Interior Design Illustrated (Ching, 2018) [9] outlined the following
four key aspects of interior design relevant to preliminary design
exploration:
• Structural and Enclosure System, assessing the integration

of structural system (comprising vertical columns and horizon-
tal beams) and enclosure systems (encompassing the building
envelope, interior walls, partitions, and ceilings) in existing or
proposed spaces.

• User Requirements Compatibility, evaluating the compati-
bility of user requirements with desired spatial quality.

• Functional Criteria, analyzing furniture layout and ergonomics
for functional excellence, emphasizing a harmonious fit between
the spatial form and dimensions and the human body.

• Aesthetic Criteria, careful attention to appropriate scale in
relation to space function, visual grouping for unity with variety,
figure-ground reading, 3D composition elements like rhythm,
harmony, and balance, appropriate orientation toward light, view,

19OpenAI gpt-3.5-turbo https://platform.openai.com/docs/models/gpt-3-5
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Figure 4: Illustration of the A) Image Analysis and B) Image Generation with Adherence Control pipeline. The system analyzes

the user-input room image, employing depth and segmentation estimators to capture Elements and Spatial Information. The

user can then control adherence to existing elements, as demonstrated in this example from the owner-designer co-design

exploration study (G1)

Figure 5: Percentage of quality ratings that are rated Good and Very Good, for each of the 16 depth/segmentation parameter

combinations, with each cell in the table representing 20 ratings, i.e. 10 images rated by 2 designers. (A) shows the overall,

averaged percentage across the 4 key aspects shown in (B): Structural and Enclosure System, User Requirements Compatibility,

Functional Criteria, and Aesthetic Criteria.

or internal focus, and the judicious use of shape, color, texture,
and pattern.
Our primary goal is to assess the viability of the AI-generated

images as design alternatives for interior design exploration, specif-
ically in terms of the four key aspects of interior design. The sec-
ondary goal is to understand how the Control Weight param-
eters of depth and segmentation maps affect the quality of design,
to help understand suitable ranges and tradeoffs.

5.1 Assessment by Interior Designers

Based on the interior design projects in the formative study, we
created a typical project for a living room with design elements
including a large window, cozy sofa, wood table, organized storage,
and in minimalist style, and assessed the two common types of site
conditions: 1) an empty room, and 2) a room with existing furniture.

We sampled the two Control Weight parameters for depth
map and segmentation maps uniformly in 4 intervals, using suitable
ranges based on feedback from a pilot study with 3 designers. For
high segmentation weight values, the generated image were often
overly influenced by the segmentation map, such as when an empty
room image is inputted alongwith text prompts for new furnishings,
yet the generated image still showed an empty room. Examples of
generated designs corresponding to the segmentation weights from
0.25 to 1.0 are shown in Appendix A.1.

Overall, there are 16 combinations of the two parameters used for
quality assessment, with 4 depth weights (ranging from 0.25 to 1 in
0.25 intervals) multiplied by 4 segmentation weights ( ranging from
0.0625 to 0.25 in 0.0625 intervals). 10 images were generated with
different seeds for each of the 16 combinations of control weights
for each of the 2 site conditions, for a total of 320 images. The
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images were randomly divided into 4 sets of 80 images, and each
image was graded by 2 designers then the ratings were averaged to
reduce potential bias.

5.1.1 Participants and Procedure. We recruited 8 designers (D4~D11),
4 males and 4 females, with ages ranging from 26 to 50. Their pro-
fessional design experience ranged from 5-15 years (mean=8.375,
SD=3.46). The designers were already familiar with Interior Design
Illustrated. We first reviewed the four design aspects to be graded
with the designers, then briefed them on the 5-point Likert scale
for quality, ranging from Very Poor, Poor, Acceptable, Good,
to Very Good, where Good and Very Good represent sufficient
design quality that the designers would use for discussion with
their clients. Each designer then evaluated the assigned set of 80
images over 4 rounds, with each round focusing on rating one of the
four aspects. The assessment took about 60 minutes to complete.

5.2 Results and Discussion

Figure 5 shows the percentage of ratings that are rated as Good
and Very Good for each of the 16 parameter combinations, across
the two site conditions. Each cell in the table represents 20 ratings,
i.e. 10 images rated by 2 designers. For completeness, example
images corresponding to the the parameter combinations are shown
for the two site conditions in Appendix A.2 (empty room) and
Appendix A.3 (with furniture).

For the empty room, there is tradeoff between meeting user re-
quirements and adhering to original building elements. The optimal
depth weight is 0.5, as user requirements (e.g. sofa and wood ta-
ble) are not met when depth >= 0.75. For the site condition with
furniture, the optimal depthweight is >= 0.75, as it improves compat-
ibility with user requirements, functional criteria (e.g. ergonomics),
and aesthetics.

Overall, the quality assessment is promising as the overall quality
ratings can achieve 70-90% of Good to Very Good design alterna-
tives across the two site conditions. For a set of 20 AI-generated
designs, this represents generating 14-18 good to very good de-
sign alternatives in about 1 minute on a single desktop PC GPU,
compared to hours of designer work required to create a single,
high-quality design alternative.

6 STUDY #3: SELF-GUIDED DESIGN

EXPLORATION STUDY BY OWNERS

Divergent thinking, corresponding to breadth in creativity, involves
generating a wide range of ideas, while convergent thinking, cor-
responding to depth, focuses on selecting and refining the most
promising ones. These two modes of thinking are quite direct and
complementary, with divergent thinking ensuring all possibilities
are considered and convergent thinking guaranteeing the most vi-
able solutions are developed. Together, they drive successful design
exploration. [4, 22, 24, 40, 52]

To understand RoomDreaming’s user experience for self-guided
design exploration by owners, we conducted a study to compare
RoomDreaming to two baselines. The first compares RoomDream-
ing to existing practices, i.e. participants can use any of their current
approaches, such as image search engines. The second compares
RoomDreaming vs. the same generative-AI capabilities of Room-
Dreaming without its support for iterative design process.

6.1 Study Design and Procedure

The study used a within-subjects design, with each participant
comparing the experience of using RoomDreaming vs. one of the
two baselines in counter-balanced ordering. For the baseline of
existing online tools, participants freely chose their preferred tools.
For the AI-generation baseline, we provided all the RoomDreaming
UI and features, except the following two features that explicitly
supported the iterative design process: 1) Liking and Bookmarking
no longer affected the prompts, and 2) the New Design Directions
slider was removed. In order to control for system response time
when fewer prompts would be requested from the GPT API in
RoomDreaming, we pre-fetched and cached 300 prompts from GPT
at the beginning of each study session and use them for the two AI
conditions for consistency.

For each conditions, participants spent 20 minutes exploring
design alternatives for their project, followed by a 10-minute semi-
structured interview. After completing the exploration with both
conditions, we conducted a final 30-minute semi-structured inter-
view. The entire study took about 120 minutes, with the first 30
minutes being an introduction to the study and becoming familiar
with RoomDreaming.

The concluded interview delved into method comparisons and
preferences, encompassing overall efficiency in understanding their
design preferences, satisfaction with final designs from both meth-
ods and also exploring aspects like breadth and depth.

6.2 Participants

In order for the design exploration to be part of a real interior design
project, we screened for participants who had already planned to
design a residential or commercial space in the next 12 months, yet
have not finalized their preliminary design directions.

We recruited a total of 12 owners, with 6 for each of the two
baselines, comprising 6 males and 6 females with ages ranging from
25 to 53. Owners focused on their living rooms (x8), bedrooms (x3),
and a psychological counseling studio (x1). 5 owners had already
cooperated with interior designers for 1~2 months.

6.3 Results: RoomDreaming vs. Existing Tools

Participants used a variety of existing tools for the baseline condi-
tion: 4 used Pinterest, 4 used Google Image Search, 2 used YouTube,
and 1 browsed a website of designers’ portfolios.

6.3.1 Breadth and Depth of Exploration. As shown in Figure 6, 4
participants preferred RoomDreaming for breath of exploration,
with its automatic expansion of prompts to introduce new design
directions. Also, “unlike Google Images, where I struggle due to a lack
of suitable keywords, RoomDreaming allows me to explore designs
without typing any keywords and discover new designs simply by
using "like" and "bookmark".” (O4)On the other hand, one participant
preferred existing tools, because “the designs in the new iteration of
RoomDreaming were too similar to previously liked and bookmarked
images.” (O7) We have addressed this issue by improving prompt
keyword ordering in version 2 of our system, as described in the
next section.

5 participants preferred RoomDreaming for depth of exploration,
as it empowered them to “expanded on ideas I liked to test them.” (O6).
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Figure 6: User preference for RoomDreaming vs. a baseline of current exploration tools: (A) Preference rating on a 7-point

Likert scale for breadth and depth of exploration. (B) Overall preference for design exploration efficiency and satisfaction.

Figure 7: Actual images from one of the participants (O9) in the self-guided exploration study: (A) shows 16 of the 18 liked

images collected using Pinterest, showing a wide range of design ideas not integrated and not matched to the participant’s room;

and (B) shows RoomDreaming designs that match the layout of the participant’s room, with 4 examples out of 20 generated

designs from each of the 1st, 3rd, and 5th iterations. The breadth in the 1st iteration helped the participant discover preference

for bold colors, and iterated from liking designs in earlier iterations to bookmarking designs in the 5th iteration.
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Participants also reported that the combination of breadth and depth
was helpful: “I originally thought I preferred a Japanese Zen style,
but after using RoomDreaming, it generated images that combined
Japanese and minimalist styles, reminding me that I had liked other
design directions before but had forgotten about them.” (O5)

Figure 7 shows a case study of the actual design exploration of
one of the participants (O9) from the study, showing sample images
collected via Pinterest and RoomDreaming, from liking designs in
earlier iterations to bookmarking designs in later iterations.

6.3.2 Overall Efficiency and Satisfaction. All 6 participants pre-
ferred RoomDreaming for overall efficiency, as each participant
was able to explore between 100~120 designs in 20 minutes. Fur-
thermore, 4 participants (O4, O5, O8, O9) specifically mentioned
that while 20 minutes was insufficient for design exploration using
current tools, it was adequate when using RoomDreaming “as it
incorporated the spatial layout of my room and generated new designs
based on my preferences.” (O4). Furthermore, the designs based on
room layout “helped me made decisions more quickly and I plan to
use these designs to discuss with my interior designer.” (O5)

For overall satisfaction, 5 participants preferred RoomDreaming,
and reported that it “allowed for a more effortless exploration” (O6).
The 1 participant who preferred existing tools mentioned that “al-
though the images generated by RoomDreaming were all beautiful,
the rationality of size and layout configuration were better in photos
of actual rooms.” (O7) Spatial rationality is indeed a key limitation
of current generative-AI technologies for architecture design, and
an active area of AI research.

6.4 Results: RoomDreaming vs. Generative-AI

6.4.1 Breadth and Depth of Exploration. As shown in Figure 8, 4
and 5 participants preferred RoomDreaming for breadth and depth
of exploration, respectively. Participants mentioned that Room-
Dreaming is suitable for early exploration (O11, O12, O14), “if users
were unsure about their preferences, RoomDreaming was highly suit-
able to find the design directions they like.” (O14). Also, it offered
improved control of design directions compared to the baseline
(O10~O13, O15): “RoomDreaming accurately presented what I desired
during the iteration process based on my likes and bookmarks. It
helped me confirm whether I genuinely liked that direction.” (O11)

However, one participant preferred the baseline for breadth “be-
cause it consistently diverged during the exploration. At this stage,
I needed lots of ideas and preferred having convergence in my own
mind.” (O15) Note that in this case, the slider for adjusting the ratio
of New Design Directions can always be set to 100%, which would
provide the same breadth as the baseline condition.

Figure 9 shows a case study of the actual design exploration of
one of the participant (O12) from the study. It shows four randomly
sampled images for each of the 1st, 3rd, and 5th iteration for both
conditions. While all generated images matched the physical room,
the baseline AI diverged in design directions throughout, resulting
in liked but no bookmarked designs. In contrast, RoomDreaming
iteratively converged towards designs that the participant book-
marked, and “some of the recommended designs are pleasant surprises
that expand the acceptable designs that I like. For example, in the 5th
iteration, RoomDreaming suggested a new light blue material that is
unexpectedly well-suited for my room.” (O12)

6.4.2 Overall Efficiency and Satisfaction. 5 participants preferred
RoomDreaming for overall efficiency. “Thanks to the control slider
that enabled generated designs to converge towards my desired direc-
tion, which helped me efficiently spend time exploring more possibili-
ties.” (O13)

For overall satisfaction, 5 participants preferred RoomDreaming.
However, one participant reported she preferred the overall effi-
ciency and satisfaction in the baseline version as “I felt like typing
directly might be better because I had a pretty good idea of the design
direction I want.” (O13) On the other hand, “designs by RoomDream-
ing sometimes deviated from my initial, envisioned directions and
sparked a curiosity to explore different styles beyondmy original plans.
I would like to continue to explore more using RoomDreaming!” (O11)

To help assess whether participants were able to generate desired
designs, we observed that the bookmarked designs totaled 6 for
baseline AI vs. 66 for RoomDreaming. In particular, 4 participants
(O10~O13) had not bookmarked any designs using the baseline AI,
mentioning that it was harder to control the designs to their desired
directions using prompts.

7 STUDY #4: SYSTEM IMPROVEMENT

The self-guided study provided valuable feedback for improvement
from owners’ perspective. To understand how RoomDreaming can
better support co-design exploration, we conducted a study with
6 interior designers to collect their feedback and suggestions. The
study design is based on the Self-guided Exploration study in the
previous section, with a different set of semi-structured interview
questions that focused on the co-design use case.

We recruited 6 interior designers (D12~D17), 3 males and 3 fe-
males, with ages ranging from 24 to 42. Their professional design
experience ranged from 5-12 years (mean=8.35, SD=3.3). The design
projects they provided, encompassed 3 residential design projects,
which were living rooms (D12, D16, D17), and 3 commercial design
projects, focusing on a clinic (D13), merchandise exhibition (D14),
and a store (D15).

7.1 Feedback and RoomDreaming V2

Improvements

All designers immediately recognized that RoomDreaming would
help improve their understanding of owners’ preferences and dis-
likes, and lead to more concrete and efficient discussions. “Room-
Dreaming is a bit like a personality test, helping homeowners explore
the design they want and facilitating designers in understanding what
they like and dislike.” (D13) At the same time, some mentioned con-
cerns with the spatial rationality and ergonomics with AI-generated
designs, which may mislead homeowner’s expectations (D13, D14,
D15).

Combining the feedback from the self-guided owner study and
this study, we describe three RoomDreaming V1 limitations and
how we addressed them in V2:

7.1.1 Generated designs being too similar to Likes and Bookmarks.
Participants reported that the generated designs in the next itera-
tion being “too similar” (O7), “repetitive” (D15), and “converged too
fast” (D12). In addition to using random seeds, we further increased
design variation within the same design direction, by shuffling the
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Figure 8: Design exploration using RoomDreaming vs. a baseline of generative-AI without support for iterative design process:

(A) Preference rating on a 7-point Likert scale for breadth and depth of exploration; (B) Overall preference for efficiency

and satisfaction. ; and (C) Total number of likes and bookmarks by each participant, showing higher number of likes and

bookmarks for RoomDreaming.

Figure 9: This figure showcased a real user case (Owner-12) in the study, comparing Baseline (AI-approach) and RoomDreaming.

Over three iterations (1st, 3rd, and 5th), with four design alternatives sampled in each, the baseline AI continued to exhibit

divergent design directions even in the 5th iteration. In contrast, RoomDreaming showed convergence to the owner’s desired

design direction by the 3rd iteration, and in the 5th iteration, suggested variations within the preferred design directions: “a
new light blue material that is unexpectedly well-suited for my room.”” (O12)
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order of the descriptors in the liked prompts rather than using them
as is.

7.1.2 Lack of support for negative user requirements. Participants
mentioned the need to express specific negative requirements for
colors, furnishing, etc. For example, “I found images I liked in sev-
eral iterations, but I didn’t want that many cushions in my living
room.” (O4) Also, “during the initial exploratory phase, we generally
want to see as much as possible, more like an ’addition’ approach to
design. However, when convergence begins, the design process shifts to
a ’subtraction’ approach.” (D14). In V1, the user requirements were
passed to the default prompt of Stable Diffusion. We added a text
field to the UI for negative requirements to utilize Stable Diffusion’s
negative prompt arguments.

7.1.3 Long batch generation time. In V1, users had to wait for the
entire batch of 20 design alternatives to be generated before starting
the next iteration, which took about 1 minute. Participants reported
that the wait time was too long when they have “clear ideas to
try” (O4) and “test” (D14). To make the system more responsive, we
added the ability to start the next iteration by interrupting the
previous batch generation.

8 STUDY #5: OWNER-DESIGNER CO-DESIGN

EXPLORATION STUDY

Interior Design Illustrated (Ching, 2018) [9] describes the following
two key collaborations between interior designers and owners,
which we also learnt from our formative studies:
• Identification of Owners’ Needs, owners convey their require-

ments and design preferences to the designers, and interior de-
signers engage in understanding their expression.

• Design Alternative Assessment with Owners, the presenta-
tion of design proposals, including educating the owners about
building systems and the assessment results of budget consider-
ations, construction requirements, spatial rationality, and more.
While the previous works focused on the collaboration and com-

munication between Humans and AI, there’s one research [12]
highlights communication issues between artists and clients, in-
cluding ambiguity in artistic descriptions, challenges in interpreting
artifact instances, managing client expectations, and the need for
effective boundary objects in artistic communication.

Meanwhile, our study focused on assessing the potential im-
provement by RoomDreaming in addressing communication issues
outlined in the formative study (referenced as 3.2) between home-
owners and interior designers.

8.1 Study Design and Procedure

In this study, pairs of an owner and an interior designer collabo-
ratively used RoomDreaming to aim to achieve a mutually satis-
factory preliminary design direction, simulating the current initial
discussion process in the stages of "Programming" and "Plan Ar-
rangement".

Because of the asymmetry in prior collaboration experiences,
with designers having had worked with many owners vs. owners
having limited, to no, prior experiences, our interviews additionally
asked designers to compare using RoomDreaming to their current
practices and extensive, prior co-design experiences.

After introducing the paired participants to each other, we intro-
duced the study, and let the participants discuss basic background
and initial requirements for 10 minutes. Owners and interior de-
signers then co-designed using RoomDreaming for 60 minutes to
explore owners’ preferred interior designs, after which we con-
ducted a semi-structured interview for their feedback. The study
took about 120 minutes to complete.

8.2 Participants

We independently recruited 4 homeowners (O16~O19) and 4 interior
designers (D18~D21), comprising 3 males and 5 females with ages
ranging from 26 to 52, and randomly paired the owners and design-
ers into groups of 2 (G1, G2, G3, G4). The 4 interior designers had
professional design experience ranging from 5-15 years (mean=8.4,
SD=3.2), specializing in residential, commercial, workspace, and
architecture design. The 4 owners were interested in designing 3
residential (O16~O1) and 1 commercial projects (O19), and had not
collaborated with interior designers.

8.3 Results

Unfortunately, the last owner-designer pair experienced GPT API
downtime during the study, preventing their use of RoomDreaming.
Consequently, the results reported will only cover the remaining
three groups.

8.3.1 Identification of Owners’ Needs. Designers mentioned that
through observing owners using RoomDreaming, they could iden-
tify owners’ needs and wishes “faster and more accurately” (D19)
with “less effort in guidance” (D19) compared to existing methods.
They also “noticed that owners were able to explore specific design
aspects more in-depth” (D19) compared to current methods, and en-
abled “owners to express their preferences more quickly and accurately
because the images align closely with the original room layout. While
the designs generated by RoomDreaming aren’t perfect, and more like
80/100, they really were based on the client’s preferences.” (D18)

One designer commented that co-designing using RoomDream-
ing “helped me understand owner’s thought processes more accurately,
often revealing that owner initially emphasized certain elements ver-
bally but prioritize differently.” (D20)

An unexpected behavior that we observed was that designers
started to correctly guess which images in the new batch of 20
images the owners would Like/Bookmark, ahead of the owners
doing so. We noted this behavior in the 3rd, 5th, and 4th iterations,
which corresponded to about 30 minutes into using RoomDreaming.

8.3.2 Design Alternative Assessment with Owners. Designers com-
mented on the accelerated pace to start discussing assessment and
feasibility, including budget and construction, with owners much
earlier than the current process. “With RoomDreaming, feasibility
issues arose quickly, allowing direct and concrete communication with
owners in real-time...for example, in the 3rd iteration, I start to esti-
mate the budget for owners” (D18) “When owner generated designs
with costly materials and elements, I could directly ask them whether
to substitute with other options. From my experience with similar
cases, normally would need 8~15 weeks to have the same level of
discussion.” (D19)
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Figure 10: Number of bookmarks saved for each iteration and the ratio of New Design Directions during the 1-hour co-design

exploration. 25 vs. 11 bookmarks were saved in the last 30 vs. the first 30 minutes, suggesting that participants were able

to generate more desired designs over time. Also, the ratio for New Design Directions lowered over time as participants

converged on their preferred design directions.

Table 2: Designers’ estimate of the work time saved by co-designing using RoomDreaming for one hour in the study, for each

of the two design stages: A) Identification of Owners’ Need: understanding owners’ design preferences and requirements; and B)

Develop and Refine Design: developing plans, elevations, sections, and details.

Interior Design Project

Identification of Owners’ Needs

(Time Saved)
Develop and Refine Design

(Time Saved)

Group1: 15𝑚2 living room with floor plan ≈ 3 working days ≈ 1 working day

Group2: 18𝑚2 empty living room ≈ 8~15 working days ≈ 14~16 working days

Group3: 10𝑚2 empty bedroom ≈ 2.5 working days ≈ 1.5~4 working days

8.3.3 Estimation of Time Saved. Designer commented on the time
saved using RoomDreaming, saying “previously, it took a week to
create 3D models based on owner requirements, and meetings often re-
quired changes that takes another week to re-render. RoomDreaming
is instant and more design iterations increase precision to prefer-
ences.” (D19)

Table 2 shows designers’ estimate of the work time saved by
co-designing using RoomDreaming for one hour in the study. Room-
Dreaming saved the equivalent of 2.5~15 working days of traditional
owner-designer meetings and preparation, and 1~16 working days
on developing and refining designs. The total time saved per project
ranged from 4~31 working days.

9 DISCUSSION, LIMITATIONS, AND FUTURE

WORK

9.1 Designing for Human + AI

Our goal through all this research and user studies has been learning
how to best leverage generative AI, that generates designs quickly
with inconsistent quality (at the moment), to augment human de-
signers, who develop designs much more slowly but at consistently
higher quality.

The insight we have learnt is that for use cases where the incon-
sistent quality has low costs in terms of user experience, generative-
AI can significantly enhance the user experience. In the case of
RoomDreaming, AI is at least 1000x faster in design generation
(3 seconds vs. 3 hours), but currently can only produce 80% good
designs, meaning that 20% or more of the generated designs are
not acceptable. Nevertheless, because our browsing UI keeps the
cost of seeing poor-quality designs low, users simply ignore and
scroll past them. Thus, the tradeoff between speed and quantity
vs. quality, works well for preliminary design exploration for both
owners and designers.

We are happy to share that in addition to many owners wanting
to continue using RoomDreaming after the user studies, 3 design-
ers from the studies have inquired multiple times whether they
could use RoomDreaming for their projects, including a design
director who wants all 5 of their interior designers to start using
RoomDreaming.

9.2 Tailoring to Region-specific Preferences

A designer noted RoomDreaming’s limitation in recognizing region-
specific preferences, leading to generated designs that, based on her
experience, she knew would not appeal to owners in this particular
city. Compared to RoomDreaming, she preferred the efficiency
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of using her library of interior designs, which she had curated
over many year to match the popular owner preferences in our
region. Even so, she found RoomDreaming “helped to understand the
logic and reasons behind each owner’s preference.” (D20) This insight
highlighted the opportunity to explore location-based tuning of the
Prompt Composer, to generate designs that owners in the region
are more likely to like. One challenge would be identifying optimal
balance between breadth and region-specific preferences.

9.3 Creativity Control

Some designers felt that their creativity was constrained because
the current designs generated by RoomDreaming reflect popular
and common designs, “RoomDreaming has difficulty achieving in-
spiring designs that are non-typical” (D15), whereas they would like
“RoomDreaming to generate highly imaginative and unconventional
ideas and challenge me to think about how to implement them.” (D14)
In order to support higher and possibly extreme creativity, we
are exploring ways to design prompts to create more imaginative
designs, and to provide such control over creativity to users.

9.4 Element-specific Preference and Generation

RoomDreaming currently supports user preference of the entire
design. Owners and designers have requested the ability to indicate
preferences for specific elements in an image, such a lamp on a
table, and also the ability to specify dislikes via the UI, rather than
through negative keywords. In addition to support these, we are also
exploring ways to support the ability to select and modify specific
components within the image, such as showing 20 different styles
of lamps on this table without affecting all other design elements.

9.5 Spatial Rationality and Multi-room Support

A key limitation of current generative AI technologies for architec-
ture is spatial rationality and ergonomics. For example, currently, a
bed that is aesthetic but too large for the bedroom may be rendered.
While current technologies are helpful for preliminary design ex-
ploration, major progress on spatial rationality, which is currently
a challenging and active topic for AI research, would be needed
in order to further support the subsequent design process, such as
floor plan generation and the implementation phase of construction
and budget.

Beyond single-room design exploration, we are exploring multi-
room support, such as the exploration of spatial proportion and
designs of adjacent spaces (e.g. a bedroom and its connecting bath-
room), to extend RoomDreaming into HomeDreaming.

10 CONCLUSION

We have proposed, designed, implemented, and evaluated Room-
Dreaming, a generative-AI approach aimed at facilitating iterative,
preliminary interior design exploration. Inspired by advancements
in generative-AI and the persistent challenges in existing design
processes, we developed RoomDreaming to facilitate iterative and
efficient exploration of design alternatives. Through an iterative
design process and a series of formative and summative studies
involving 18 homeowners and 20 interior designers (with a com-
bined professional experience of 112 years), we have fine-tuned
the system to align with users’ needs and preferences. The results

from our studies underscore the potential of RoomDreaming to
accelerate the design process, enabling users to quickly explore
a vast array of design alternatives more broadly and deeply, and
improve communication between owners and designers.
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