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Figure 1: Uncertain Pointer explores feedforward visualizations that convey input ambiguity and facilitate disambiguation. For

example, when (a) speech input is ambiguous, (b) visual identifiers such as color labels can distinguish candidates and support

verbal clarification (e.g., saying “the pink one”), or when (c) users’ pointing input to query grocery items refers to multiple

possible targets, (d) Uncertain Pointers help narrow the candidate set to aid selection (e.g., using reduced control-display gain)

while keeping the system’s interpretation transparent.

Abstract

Target disambiguation is crucial in resolving input ambiguity in
augmented reality (AR), especially for queries over distant objects
or cluttered scenes on the go. Yet, visual feedforward techniques
that support this process remain underexplored. We present Uncer-
tain Pointer, a systematic exploration of feedforward visualizations
that annotate multiple candidate targets before user confirmation,
either by adding distinct visual identities (e.g., colors) to support
disambiguation or by modulating visual intensity (e.g., opacity) to
convey system uncertainty. First, we construct a pointer space of
25 pointers by analyzing existing placement strategies and visual
signifiers used in target visualizations across 30 years of relevant
literature. We then evaluate them through two online experiments
(n = 60 and 40), measuring user preference, confidence, mental ease,
target visibility, and identifiability across varying object distances
and sparsities. Finally, from the results, we derive design recom-
mendations in choosing different Uncertain Pointers based on AR
context and disambiguation techniques.
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1 Introduction

Pointing or referencing an object or region of interest is a funda-
mental part of human action, helping to establish shared attention
and ground the subject of interaction [33, 34]. Recent advances
in display technology, spatial tracking, and AI have enabled this
behavior to extend into augmented reality (AR). Smart glasses and
AR headsets (e.g., Meta Orion1, Snapchat Spectacles2, and VIVE
Eagle3) now support multimodal interactions that allow users to
point, gesture, and speak about real-world objects in situ, anytime,
and on the go.

However, despite their ubiquity and convenience, such queries
are often prone to ambiguity in user input. For example, although
voice input is natural [44, 112], verbal commands, in particular,
are prone to linguistic ambiguity (e.g., syntactic ambiguity [186]
or pronoun ambiguity), a long-standing challenge dating back to
Bolt’s visionary “Put That There” system [15] and its successors [35,
95, 218]. Moreover, input on-the-go introduces tradeoffs in stability
and precision, including requiring significantly more interaction
time [225] and strategies to compensate for input noise [86]. Lastly,
AR-based target queries can be affected by target complexity, such
as object distance [203] and clutter [82], which hinder both system
recognition and user specification. To illustrate, consider a wearer
of smart glasses passing down the street (Figure 1a), gazing toward
an upcoming group of traffic signs and asking, “What does that sign
say?” The system must resolve multiple ambiguities: ambiguous
linguistic reference (“that sign”), noisy gaze-pointing due to motion,
and multiple plausible targets being far and densely packed.
1Meta Orion https://about.meta.com/realitylabs/orion/
2Snapchat Spectacles https://www.spectacles.com/
3VIVE Eagle https://www.vive.com/us/product/vive-eagle/overview/
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To address such input ambiguity, researchers have investigated
explicit disambiguation techniques that require users to take addi-
tional steps to refine their inaccurate input and disambiguate one
target from many [57, 96, 158, 209, 215]. Within these disambigua-
tion methods, visualizations are commonly integrated as a lasso,
a colored area, or a bounded region to indicate an initial coarse
selection. However, they are seldom evaluated or systematically
compared. Furthermore, most existing visualizations for disam-
biguation have been developed and tested in plain scenes, where
object characteristics are tightly controlled. In contrast, real-world
objects in AR scenarios vary significantly in distance and density.
As a result, determining which visualizations are best suited for
different AR disambiguation contexts remains an open question.

In this paper, we move beyond input to investigate visualizations
that support disambiguation and convey uncertainty during AR
target selection across varied object layouts. Our key observation
is that explicit disambiguation techniques begin with an ambigu-
ous, coarse selection step, in which a set of candidate objects is
identified. To support this, we explore visualizations that annotate
multiple potential targets in AR, which we term Uncertain Point-
ers.4 Specifically, we investigate three types of pointer designs: (1)
Level pointers (Figure 1c & d) modulate visual intensity of annota-
tions (e.g., size, opacity) to convey system uncertainty or selection
likelihood transparently. The graded information also inherently
enables spatial disambiguation via gaze or pointing as there is a
clear indication of the direction in which the user shall adjust their
input. (2) Identity pointers (Figure 1a & b) assign distinct, non-
hierarchical identities (e.g., color, letters) to each candidate without
implying likelihood, supporting verbal disambiguation via added
unique and descriptive attributes. (3) Certain pointers annotate a
single object, highlighting the system’s single top selection directly.
We include this as a baseline, but also for a highly certain AR se-
lection scenario and implicit disambiguation techniques that do
not include a first-step coarse selection. While each pointer type is
suited for different disambiguation strategies, they are not mutually
exclusive. Systems can combine them, e.g., using Level Pointers
for first-step coarse selection and then Identity or Certain Pointers
for finer verbal resolution within the selected targets set. Thus,
our investigation offers flexible visualization choices adaptable to
various disambiguation workflows, along with their tradeoffs and
design considerations.

To explore potential designs for Uncertain Pointers, we first con-
ducted a holistic systematic survey into target-dependent visualiza-
tion techniques regarding feedforward visualization, uncertainty
visualization, and situated visualization from the past 30 years of
publications at ACM CHI, UIST, DIS, VRST, SUI, and AutomotiveUI,
along with IEEE TVCG, ISMAR, 3DUI, and VR. This survey in-
formed the characterization of the four major pointer archetypes
(i.e., external, internal, boundary, and fill) along with the
four most prevalent visual signifiers (i.e., color, size, opacity, and
text), which can be combined with our three pointer types that
convey different degrees of uncertainty complexity (i.e., certain,
identity, and level). We explore how these archetypes, signifiers,
and uncertainty complexities can be combined to form new possible
4Terminology: Throughout the paper, we use Uncertain Pointer (singular) to denote
our work as a whole, and Uncertain Pointers (plural) to denote the set or any subset of
specific pointer designs and candidates.

visualizations, resulting in Uncertain Pointer’s pointer space of 25
candidates.

We then conducted two pre-registered, online user studies to
evaluate how well Uncertain Pointers communicates system un-
certainty, improves target noticeability, and minimizes occlusion,
along with subjective metrics such as user preference and perceived
mental effort. The evaluations covered 4 target-complexity scenar-
ios (near/far × dense/sparse) and 3 target-count levels. To manage
the number of conditions per study, Study 1 (n = 60) focused on
certain and identity Pointers, which informed the exclusion of
low-performing designs. Study 2 (n = 40) then evaluated level
visualizations. Finally, based on the findings, we derived design rec-
ommendations and usage examples for applying Uncertain Pointers
across AR scenarios.

In sum, this work systematically investigates Uncertain Pointers
to communicate input uncertainty for AR target selection:
• We conducted a literature survey to categorize existing feedfor-
ward and uncertainty visualizations (at TVCG, CHI, ISMAR, DIS,
UIST, IEEE VR, 3DUI, AutomotiveUI, SUI, and VRST conferences)
and generate Uncertain Pointer’s pointer space.

• We investigated the effectiveness of Uncertain Pointers and their
trade-offs using two preregistered online studies (n = 60 and 40,
respectively) across different background and target complexities.

• We provided design recommendations and example uses for fu-
ture systems utilizing Uncertain Pointers.

2 Related Work

2.1 Selection Ambiguity and HCI

Since the introduction of Fitts’ Law to HCI [119], it has been clear
that small and distant targets are harder to select. As computing
form factors evolved, more sources of input ambiguity emerged,
including motor limitations (e.g., the fat-finger problem), input
during movement [225], linguistic ambiguity [44, 112], and system
recognition errors. To address these, researchers have explored
implicit disambiguation that utilizes additional input information or
performs extra analysis on input behavior [41, 77, 107, 165, 179, 184]
and explicit disambiguation strategies that require users to perform
refinement or clarification for final selection [5, 57, 96, 215].

For implicit disambiguation in 2D interfaces, Bubble Cursor [56]
utilizes target proximity to dynamically resize its activation area and
acquire the closest target. MAGIC mouse technique leverages gaze
information to improve clicking accuracy [45]. Other systems use
icon semantics [23], voice [136], or statistical criteria from users’
pointing [111, 165] and touch input [12, 169] behaviors. For VR
and AR, some implicit disambiguation techniques extend existing
2D techniques to 3D (e.g., 3D bubble cursor [192] or selection-by-
volume [41]), while others adopt depth estimation [124], 3D gestural
recognition [85, 116], or mobile gaze prediction [8], along with
techniques that leverage the human’s inherent multimodal habit
in 3D spatial interaction, such as utilizing gaze attention during
speech query [107] and speech with gestural input [108, 135].

Despite their unobtrusiveness, implicit disambiguation methods
fail under degraded sensing conditions or when user intent cannot
be reliably inferred. For example, when the sensing channel is noisy,
critical cues are occluded or unavailable, or the user input is ambigu-
ous or incomplete for the intended input channel. These issues are
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especially common for lightweight, ubiquitous devices in uncertain,
dynamic contexts, where occlusion, motion jitter, and missing data
are routine. In contrast, explicit disambiguation requires users to
take an additional step to resolve input ambiguity before final con-
firmation, helping bring the uncertainty to the user’s awareness and
prevent incorrect selections. Explicit approaches frequently incor-
porate (1) visualizations to highlight the initial coarse selection and
(2) an input method for refinement and disambiguation. In terms of
refinement modality, hand input is the most common one, including
controller input to refine raycursor or pointing selection [6, 46, 192],
pointing to compensate initial region selection [209], gestural input
to specify target from multiple options within a 3D volume [57, 58],
cluster of objects [96, 215], or a list of potential operations [28]. Ad-
ditionally, explicit techniques may utilize different input modalities
from the initial input for confirmation or disambiguation, such as
using head movement with gaze input [105, 106, 195, 196], hand
input with gaze refinement [106, 219], gaze cursor with hand adjust-
ment [27, 143, 180, 222], or adaptively switching fall-back modal-
ities based on tasks and use cases [175]. Regarding visualization,
techniques such as color underlines and box outlines [158], circled
areas [96, 209], and cones or lassos [215] are often used when there
are several potential candidate targets.

In summary, there is vast research on disambiguation techniques.
Uncertain Pointer’s exploration aims to complement disambigua-
tion over targets in AR by exploring pointer design possibilities and
their trade-offs. Specifically, our investigation on Certain pointer
provides recommendations for implicit disambiguation, while our
exploration on Identity and Level design assists disambiguation
with object pointing [59] in AR and verbal clarification over targets
during interaction with visual assistants [200].

2.2 Feedforward Visualization

Feedforward refers to cues that indicate the possible outcomes of an
action before it is executed, helping users anticipate system behav-
ior and direct themselves to their goal [134, 194, 202]. In desktop
interfaces, feedforward is prevalent: hover effects highlight inter-
active elements, cursor position previews where interaction will
occur, and cursor icon changes (e.g., arrows to hand) indicate avail-
able actions. Beyond these common cues, researchers have explored
rich visual feedforward strategies. For instance, Guillon et al. [60]
introduces feedforward for target expansion, which dynamically
enlarges a target’s effective area as the cursor approaches to en-
hance target recognition during selection. Fortunettes [36] extend
feedforward to widgets by previewing their future states (e.g., pre-
viewing a checked checkbox to see on-click UI state changes). On a
touch interface, ShadowGuides [50] use projected visual elements
such as dynamic arrows and keyframes to guide gesture before
users complete their input, thus reducing learning burden.

The most closely related work to ours involves feedforwards
that visualize multiple input possibilities for user confirmation.
For example, OctoPocus [9] provides real-time visual previews of
stroke-based gestures, using color and opacity to distinguish be-
tween multiple candidate gestures. Later adaptations extended this
technique: Malloch et al. [121] incorporated gradient encodings to

signal gesture likelihood (including improbable paths) and Dela-
mare et al. [42] ports it to 3D input settings. Probabilistic frame-
works have been proposed to support such adaptive feedforwards
for previewing multiple system actions [122, 123, 169]. For example,
Schwarz et al. [170] introduces a probabilistic framework in which
feedforward cues adapt dynamically: alternative actions (e.g., play
vs. add to playlist) are previewed, with the likely option emphasized
to reveal the system’s interpretation and guide user choice.

Together, these techniques demonstrate how feedforward can
surface input uncertainty and guide resolution during interaction.
However, they are mostly designed for 2D touchscreens and desk-
tops, where input is bounded by standardized UI elements. Uncer-
tain Pointer explores a similar idea, showing users multiple possible
selection targets before they finalize a choice, but specific for real-
world targets in AR, which requires new design considerations for
situated, spatially anchored feedforward visualizations.

2.3 Uncertainty Visualization for Interactive

System

Uncertainty visualization uses visual encodings to represent in-
complete information or confidence levels, enabling users to better
interpret and act on uncertain data [176]. Common techniques in-
clude error bars in bar charts, uncertainty ranges in line graphs,
and color variations in heatmaps. These approaches typically map
uncertainty to visual channels such as color, size, or opacity, comple-
menting depictions of the single average value or state [132, 138].

In 2D interactive systems, uncertainty visualizations have sup-
ported user understanding across diverse domains, such as visualiz-
ing confidence in geospatial data [93], hurricane forecasts [13],
fertility predictions [168], GPS accuracy [150], and bus arrival
times [87]. In 3D or physically situated environments, researchers
have also applied similar principles to support decision-making.
For example, uncertainty has been visualized through AR head-up
displays to convey driving confidence [102], or via in-car light bars
to communicate road guidance uncertainty [101]. Others use spatial
overlays to visualize sensor confidence around sensing devices [91].

Uncertain Pointer draws on these works by bridging uncertainty
visualization and AR pointer design. We explore different visual en-
codings, such as size and color, to communicate system confidence
in candidate targets, supporting both transparency and user disam-
biguation. In particular, we focus on visualization techniques that
emphasize targets by adding controlled levels of visual saliency. An
alternative approach common in uncertainty visualization is to de-
emphasize less certain referents (e.g., through blurring [19, 61, 117]).
Although such techniques could be adapted to AR through methods
like diminished reality [32, 130], they introduce inherent limitations:
they reduce the visibility of the initially coarse-selected targets, and
if the intended target is not recognized as the top candidate and
blurred out, it impedes effective disambiguation. Furthermore, they
are less generalizable to optical see-through devices. Thus, we focus
on uncertainty visualization techniques that emphasize targets.

3 Survey and Pointer Design

To explore and understand Uncertain Pointers design possibilities,
we conduct a systematic literature review to investigate annotation
strategies and visual signifiers that could be used to add identity
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for disambiguation or to represent uncertain confidence levels in
target selection scenarios.

Our systematic literature review follows PRISMAguidelines [129].
Our goals were to (1) identify prior research relevant to visualizing
uncertainty during selection tasks, and (2) develop new possible
visualization designs for uncertain target selection, extrapolated
from these existing approaches.

3.1 Requirements and Sources

Our review includes papers that meet the following criteria:
1. The paper must involve visualizations that communicate feed-

forward or uncertainty information directly to users.
2. The paper needs to present a visualization technique for visible

targets that shows area or volume. Specifically, we are looking
for situated visualization [20] with a 3D referent or embedded
visualization [205] with a 2D referent.

For Criterion 1, we excluded papers that address uncertainty solely
from the perspective of robotic planning or model-internal com-
putation, without a user-facing component. For example, we did
not include techniques designed exclusively for ambiguity-aware
robotic systems (e.g., [167]) or predictive models (e.g., [156, 220]).

Under Criterion 2, we required that the visualization techniques
be applicable to target selection scenarios and capable of annotating
real-world targets. This excluded abstract data visualizations such as
density plots or quantile dotplots [47, 87], which cannot be directly
used for object-based visualization.

Across both criteria, we excluded works that communicate uncer-
tainty without using visual modalities, such as approaches relying
solely on auditory or haptic feedback [79, 104].

3.2 Survey Method

3.2.1 Phase 1: Identification. We aimed to identify high-impact
papers on visualization relevant to target selection scenarios. Given
the interactive nature of our target scenario, we focused on venues
that emphasize user interaction. We surveyed publications from the
following proceedings: the ACM Conference on Human Factors in
Computing Systems (CHI), the ACM Symposium on Virtual Reality
Software and Technology (VRST), the ACM Symposium on User
Interface Software and Technology (UIST), the ACM Conference
on Intelligent User Interfaces (ACM IUI), the ACM Conference on
Designing Interactive Systems (DIS), the ACM Conference on Au-
tomotive User Interfaces and Interactive Vehicular Applications
(AutomotiveUI), the ACM Symposium on Spatial User Interaction
(SUI), the IEEE Transactions on Visualization and Computer Graph-
ics (IEEE TVCG), the IEEE International Symposium on Mixed and
Augmented Reality (IEEE ISMAR), the IEEE Conference on Virtual
Reality and 3D User Interfaces (IEEE VR), and the IEEE Symposium
on 3D User Interfaces (IEEE 3DUI).

We focused our search on feedforward, uncertainty, and visual-
ization, along with terms for our intended user scenario (i.e., in-situ,
selection) via the advanced search fields of the (in-situ, selection)
to appear in either the title or abstract.

title: uncertainty OR feedforward OR (in-situ AND visu-
ali*) OR (selection AND visuali*) OR

abstract: uncertainty OR feedforward OR (in-situ AND
visuali*) OR (selection AND visuali*)

We used structural boolean queries (not keyword search) via the
advanced search field of IEEE and ACM Digital Libraries, covering
full papers published between 1990 and 2025. The asterisk (*) was
used as a wildcard to represent any number of unknown characters.
This resulted in 721 results: 288 from TVCG, 285 from CHI, 32
from ISMAR, 30 from DIS, 27 from UIST, 24 from IEEE VR, 13 from
AutomotiveUI, 8 from SUI, and 5 from VRST. We compiled the titles
and abstracts of these 721 publications for screening in Phase 2.

3.2.2 Phase 2: Screening. We screened the titles and abstracts of
the 721 papers collected in Phase 1 based on the inclusion criteria
described above. 299 papers were selected for Phase 3, while 422
were excluded.

3.2.3 Phase 3: Eligibility. We reviewed the full-text articles for
eligibility based on the two inclusion criteria. Papers were excluded
at this stage if they did not meet either criterion upon closer full-
text review or if they were not full papers. For example, we exclude
non-archival articles, posters, workshop papers, and late-breaking
work. In total, 179 publications were excluded during this phase.
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database searching (n = 721)
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Full-text article assessed for 
eligibility (n = 299)

Papers included in the
analysis (n = 120)

Records excluded based on title
and abstract screening (n = 422)

Full-text article excluded based
on the two criteria (n = 179)

Figure 2: Flow of information through the different phases

of our systematic review, following PRISMA guidelines.

3.2.4 Coding Process. We coded each of the 120 eligible papers
along two dimensions: (1) Pointer Archetype, referring to the
annotation and placement strategy used to associate the visualiza-
tion with the referent (e.g., adding a visible mark to the referent or
outlining the referent’s boundary); (2) Visual Signifier, the visual
property used to distinguish highlighted referents from each other
or from non-referents (e.g., color, size, etc.), which may or may not
explicitly convey uncertainty.

Many papers include multiple visualizations within their use
case and are therefore applicable to multiple categories. We apply
multiple labels in such cases. For the eligibility and screening phase,
two of the authors independently reviewed the entire collection.
If either author marked a paper for inclusion, it was advanced to
the next phase. For dataset coding, the same two authors inde-
pendently coded the final dataset and resolved any disagreements
through discussion. The initial inter-rater agreement was 93%, with
no discrepancies remaining after resolution.
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Table 1: Overview of systematic literature review, resulting in a dataset of 220 visualization techniques.

External Internal Boundary Fill %

color

[65, 74, 91, 103,
115, 121, 140,
144, 190, 216]

[16, 31, 55, 60,
76, 102, 141,
147, 158, 163,
181, 206, 216]

[3, 24, 40, 54, 55,
73, 78, 89, 92,
144, 146, 152,
172, 181, 182]

[1, 2, 6, 13, 19,
25, 26, 30, 39,
83, 90, 93, 101,
131, 139, 168,
214, 216] and
46 more*

102
(46.36%)

size

[70, 103, 115,
154, 187, 207,

216]

[1, 16, 61, 62,
91, 99, 100, 102,
109, 113, 117,
159, 161, 168,
199, 201, 211,

213]

[2, 24, 61, 63,
92, 140, 162,
173, 182, 188]

- 35
(15.91%)

opacity [60, 158, 159] [97, 102, 114] [60, 162]

[9, 48, 60–62,
64, 93, 98, 110,
113, 117, 128,
144, 146, 159,
170, 212, 221]

26
(11.82%)

text

[31, 91, 93, 137,
163, 188, 223]

[2, 71, 100, 126,
137, 147, 148,
168, 188, 201]

- - 17 (7.73%)

texture [187] [101, 102, 181] [17, 54, 89, 181,
208] [91, 117, 188] 12 (5.45%)

shape [65, 140] [93, 102] [17, 63, 117,
208] - 8 (3.64%)

position [37, 103, 214] [62, 102, 117] - - 6 (2.73%)
resolution [91] [102] [19, 61, 117] [61] 6 (2.73%)

orientation [80] [102, 117, 178,
188] - - 5 (2.27%)

length [91] [2] [168] - 3 (1.36%)

36 (16.36%) 58 (26.37%) 40 (18.18%) 86 (39.09%) TOT: 220

*Additional fill-color visualizations: [3, 9, 14, 16, 29, 43, 48, 49, 61, 62, 66, 72, 73, 84, 92, 99, 109, 110, 113, 117, 118,
128, 142, 144, 146–148, 151, 153, 155, 157, 159, 161, 164, 173, 174, 177, 188, 189, 198, 201, 210, 213, 221, 224, 226]
others (animation or avatar): [4, 88, 125, 166, 193]

3.3 Survey Results

3.3.1 Pointer Archetype. For the pointer archetype dimension, we
discovered four primary categories that can describe most of our
dataset: external, internal, boundary, and fill. Additionally,
we include a fifth category, others for cases that do not fit into
the main four and are considered unsuitable for AR target selection
scenarios. external refers to visual annotations placed outside the
referent’s area or volume, while internal refers to those placed and
anchored within it. The boundary category includes annotations
that follow or highlight the referent’s outline. fill applies a color
or pattern change across the entire referent.

Among the 120 papers of our dataset, we summarized a total of
220 visualization techniques, of which 16.36% belong to external,
26.37% internal, 18.18% boundary, and 39.09% are fill. Among
the others category, some techniques use embodied virtual charac-
ters to express dialogue-based uncertainty around objects [88, 166],
while others rely on blinking or animated motion cues [4, 125, 193].
We consider these approaches overly distracting for on-the-go use,
raising potential safety concerns and limiting their suitability for
mobile or attention-sensitive AR scenarios.

3.3.2 Visual Signifier. We coded the dataset along the visual sig-
nifiers shown in previous literature [91, 94, 102, 132, 217], which

encapsulates 11 category, including Position, Size, Length, Shape,
Orientation, Color (including saturation, hue, and luminance), Tex-
ture, Opacity, Resolution, Text or Numeric, and Angle. Among our
dataset, 102 of the used signifiers are color, 35 are size, 26 are opac-
ity, 17 are text, 12 are texture, 8 are shape, 6 are position, another 6
are resolution, 5 are orientation, and 3 are length.

3.4 Pointer Space

Based on our systematic literature review, we generated our pointer
space based on the four pointer archetypes and the top four sig-
nifiers in our dataset (e.g., color, text, size, opacity); also, with un-
certainty complexity, which captures the level of uncertainty infor-
mation conveyed by the visualization: (1) certain: No uncertainty
is expressed; only a single object is annotated, similar to a con-
ventional deterministic pointer. (2) identity: Visualizations that
convey only the existence of uncertainty and facilitate disambigua-
tion; it annotates multiple candidate targets without encoding the
magnitude of uncertainty between them. To support fast, easy dis-
ambiguation, Identity visualizations use visual identities (such as
distinct colors or text labels). Since applying size or opacity changes
inherently implies a ranked or leveled hierarchy, they are not in-
cluded as identifiers in the Identity category. Also, we added a none
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Figure 3: Pointer space of Uncertain Pointer, defined across three dimensions: (a) Uncertainty Complexity Type, strategies for

facilitating disambiguation that convey varying amounts of uncertainty information (e.g., Certain discloses no uncertainty,

Identity shows the existence of uncertainty, Level reveals a graded level of uncertainty); (b) Visual Signifier, visual attributes

used to represent uncertainty levels or identities (e.g., color, size, opacity, text/symbol); (c) Pointer Archetype, different forms

and spatial placements of visualizations relative to the target objects (e.g., boundary, fill, internal, external).

signifier category with a uniform color to the identity pointer set,
not only to set a baseline but also to showcase the presence of
uncertainty. (3) level: Visualizations convey graded uncertainty
across multiple candidates using variations in visual signifiers (e.g.,
intensity, size, or opacity), communicating the system’s confidence
in each candidate object being the intended selection target. In level
pointer, for Color changes, we utilize a combination of increasing lu-
minance and decreasing saturation [67], based on MacEachren et al.
[117]’s and Correll and Gleicher [38]’s results, as they both find it
effective when (un)certainty is encoded using these properties.

Overall, Uncertain Pointer’s pointer space is a set of visible, over-
laying, abstract AR visualization with purpose of directing attention
toward uncertain candidate set for target disambiguation (follow-
ing Zollmann et al. [227]’s AR visualization categorization), with
three design dimensions: (1) uncertainty complexity type, (2) visual
signifier, and (3) pointer archetype.

4 Online Experiment 1: Certain and Identity

Visualizations

The goal of this first online experiment is twofold: (1) to examine
how different scenes, archetypes, and signifiers influence visualiza-
tion effectiveness for Identity and Certain visualizations in terms
of pointer identifiability while maintaining object visibility, and (2)
to find low-performing or incompatible scene–archetype combina-
tions to exclude from the follow-up study for level visualization.

4.1 Task and Procedure

In the experiment, participants viewed a series of mock-up AR
videos and completed object counting tasks and provided a collec-
tion of subjective ratings without performing target selection in
the video scene. Each video featured an Uncertain Pointer visualiza-
tion embedded within a specific real-world scene. After a tutorial
explaining the simulated AR scenario and a brief practice session,
participants proceeded to complete the tasks for each video trial.
To assess participant attention levels, two attention checks were
embedded intermittently throughout the study. Additionally, each
participant was offered a 5-minute break after every quarter of the
total number of trials to mitigate fatigue. After completing all video
trials, participants were asked to provide open-ended feedback and
share their thoughts on the visualizations via text boxes.

We excluded data from any participants who failed either at-
tention check, continuing recruitment until we reached 60 eligible
participants. 12 participants failed our attention test in this study.
This sample size was determined through our pre-registered power
analysis to ensure 90% statistical power for comparisons across
archetype, signifier, and archetype × scene.

4.2 Preparation and Apparatus

The entire study protocol was implemented in Qualtrics, includ-
ing the object-counting task and the subjective rating questions
(Figure 10 A & C). The mock-up AR videos were generated in
Unity. These videos cover four background scenes, combining two
target distances (near vs. far) and two target sparsities (sparse vs.
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dense). Each background was created using a Gaussian splat cap-
ture (Figure 4), with 3D objects manually annotated for application
of Uncertain Pointer’s visualization effects. To simulate the sense
of 3D motion from a first-person perspective, we used Unity’s Cin-
emachine to position the virtual camera and applied noise to the
camera’s motion to mimic a natural, continuous shake in an AR
user’s perspective on the move. The resulting scenes were rendered
as videos for use in the online study.

A

B C

D E

Gaussian Splat Capture

Cinemachine Placement
(with handheld motion)

Resulting Mock-up Video View

Figure 4: (A) Our mock-up AR video generation pipeline

from Gaussian splat capture to resulting videos along with

the 4 scenes used for our study with varying target distance

and sparsity: (B) sparse × far, shown with a external-

certain pointer, (C) dense × far, shown with internal-

text-identity pointers, (D) sparse × near, shown with

fill-color-identity pointers, and (E) dense×near, shown

with boundary-color-level pointers, across the tower, ten-

nis court, paintings, and books scenes, respectively.

To annotate objects across pointer archetypes and visual signi-
fiers, we followed a set of heuristics grounded in prior literature.
The default pointer color was set to green, as it has been shown
to offer high visibility in AR environments with varying back-
grounds [52, 127] and is effective to convey a positive, confirmatory
semantic meaning (or connotation) suitable for the most certain
option [117]. For text-based signifiers, we adopted a “billboard” de-
sign [51], using deep blue text on a white background to
ensure legibility across diverse real-world textures. To minimize
visual clutter introduced by background interference, we also ap-
plied view management principles from Grasset et al. [53], avoiding
edges and textured regions when placing external textual annota-
tions. For identity pointers with the color signifier, we use easily
verbalized colors with luminance similar to our default green to
avoid visual hierarchy. To accommodate users and participants with
deuteranomaly or protanomaly (red-green color blindness), we ap-
plied colorblind-friendly adjustments by avoiding similar red-green

channel intensities. The overall identity color set results in the use
of yellow, pink, orange, and blue.

4.3 Study Design

The study used a within-subject design and was pre-registered5 be-
fore deployment. It covered two of the uncertainty complexities
in our pointer space: certain and identity, but these were not
analyzed or compared to each other. Therefore, the independent
variables were archetype, signifier, and scene:
• 4 scenes with varying target distance and sparsity: sparse × far
(sf), dense × far (df), sparse × near (sn), and dense × near
(dn).

• 4 pointer archetypes: external, internal, boundary,
and fill.

• 3 signifiers for identity: none, color, and text.
Additionally, for each archetype × signifier × scene triad, we
created 3 target configurations with varying numbers (3, 4, or 5) and
target locations to minimize participants’ learning effects across
trials. In total, we created 4 scenes × 3 target variations × (4 Certain
Pointers + 10 Identity Pointers) = 168 video variations. For each
video trial, participants were asked to perform a counting task on
how many targets in the video scene were being annotated with a
visualization effect, referenced from the counting and identification
task in previous visualization literature [75, 160] and a series of
subjective questions, including preference, target visibility using
1–7 continuous scales with thematic anchors. For workload-related
measures, we only used a subset of the NASA-TLX survey that was
relevant for our task, while mitigating fatigue across the repeated
trials. The dependent variables are shown as follows:
• Duration (s): From video onset to counting task submission.
• Error in Count: Absolute difference from the correct number of
targets.

• Confidence: “How confident are you about your answers?” (1 =
Very Unsure, 7 = Very Confident)

• Mental Ease: “How much mental effort was required to perform
the tasks?” (1 = Very High, 7 = Very Low)

• Target Visibility: “To what extent do you think the visualization
blocks the user’s view, making it difficult to see the details of the
objects?” (1 = Very Much, 7 = Very Little)

• Preference: “How likely are you to choose to use this visualization
during this scenario?” (1 = Very Unlikely, 7 = Very Likely)

We adopted continuous rating scales instead of ordinal Likert scales.
This allows us to perform more flexible and rigorous analyses with
interval-level statistics (e.g., mean comparison).

Each participant was presented one of the three target variation
for each video trial, so a total of 56 unique video trials, covering
all combinations of annotation archetype × signifier × scene
for identity visualization and archetype × scene for certain
visualization. The trials were organized into four blocks, each con-
taining 14 shuffled video trials with the same scene. The order of
the scenes across blocks was also randomized.
5The link to Experiment 1 pre-registration, revised during the review process to use
repeated measures ANOVA with sphericity tests, along with post hoc t-tests using
Holm–Bonferroni correction.
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4.4 Participants

We recruited 60 participants (ages 18 to 52, m = 23.1, sd = 5.5)
via mailing lists and word of mouth. 36 identified as women, 20
as men, 3 as non-binary, and 1 preferred not to disclose. Only 1
participant reported being colorblind. All participants provided
informed consent and were compensated with a $15 Amazon gift
card. The study took less than 1 hour to complete.

4.5 Data Analysis

We analyzed behavioral and subjective measures using repeated
measures ANOVA and, when sphericity was violated, reported
Greenhouse-Geisser-corrected degrees of freedom, F-statistics, and
p-values. For post hoc comparisons, we conducted paired t-tests
with the Holm–Bonferroni correction. The analyses were conducted
across the independent variables (scene, archetype, and signi-
fier). Specifically, we conducted comparisons among archetypes
for both certain and identity pointers, and among signifiers
and archetype × scene for identity pointers.

Given the large number of visualization conditions and the many
possible groupings for pairwise comparisons, we focus on reporting
results for archetype and signifier comparisons, while only pre-
senting a few specific findings for archetype × scene (Figure 6);
full statistical result are reported in the Appendix. We complement
our quantitative results with participants’ qualitative feedback from
open-ended responses to provide possible explanations.

Additionally, we performed K-means clustering on combinations
of archetype × signifier × scene in the identity pointer condi-
tion to rule out potentially less effective pairings before proceeding
to Study 2 with level pointers.

4.6 Results for Certain Pointers

We first discuss the result for certain pointer, where there’s only
one object being annotated. For archetype comparison in Certain
pointers, we observed significant effects in Preference (𝐹3,177 = 50.48,
𝑝 < .0001, 𝜂2

𝑃
= 0.46), Confidence (𝐹3,177 = 3.34, 𝑝 < .05, 𝜂2

𝑃
= 0.053),

Mental Ease (𝐹3,177 = 7.27, 𝑝 < .0005, 𝜂2
𝑃

= 0.11), and Target Visi-

bility (𝐹1.68,99.17 = 122.12, 𝑝 < .0001, 𝜂2
𝑃
= 0.67, Greenhouse-Geisser-

corrected) with repeated measures ANOVA.
As shown in Figure 5 and revealed by post hoc pairwise t-tests

with Holm–Bonferroni correction, across all scenes, the bound-
ary archetype consistently yields the best ratings. It received signif-
icantly higher ratings than internal (𝑝 < .0001, Cohen’s 𝑑 = 1.71),
external (𝑝 < .005, 𝑑 = 0.41), and fill (𝑝 < .0001, 𝑑 = 1.14) in
Preference; surpassed internal (𝑝 < .005, 𝑑 = 0.49), external
(𝑝 < .005,𝑑 = 0.5), and fill (𝑝 < .1, 𝑑 = 0.31) in Mental Ease; and sur-
passed internal (𝑝 < .0001, 𝑑 = 1.39) and fill (𝑝 < .0001, 𝑑 = 1.65)
in Target Visibility. 35% of the participants mentioned they favor
boundary as their most preferred archetype, as it does not “ob-
scure” [p7], “block” [p10], or “obstruct” [p26] the items and “kept the

object in clear view” [p41]. Participants also express that it’s easy to
“identify” [p42] and “spot” [p8].

external is considered the second-best option except for the df
(dense and far) scene. It received significantly higher overall ratings
than internal (𝑝 < .0001, 𝑑 = 0.93) and fill (𝑝 < .0001, 𝑑 = 0.96) in
Preference; and surpassed internal (𝑝 < .0001, 𝑑 = 1.14) and fill

(𝑝 < .0001,𝑑 = 1.57) in Target Visibility. 25% of participants expressed
a preference for the external archetype, quoting its ability to
“allow me to see the objects” [p55] and being the “least occlusive” [p46].
However, participants also noted limitations of external in the df
scene. Specifically, when pointing to small, cluttered tennis courts,
external pointers were described as “confusing” [p56] and prone to
“being mistaken” [p37] as the pointer is displaced from the objects.

internal and fill are the less preferred archetypes. Among
the two, internal significantly outperformed fill in Preference

(𝑝 < .001, 𝑑 = 0.35) and Target Visibility (𝑝 < .0001, 𝑑 = 1.17). How-
ever, participants also mentioned they are more useful for “faraway
objects” [p54].

4.7 Results for Identity Pointers

Here, we discuss the result for identity pointer, where multiple
targets in the uncertainty set are annotated with either the same
color (i.e., none), distinct hues of color (i.e., color), or a text label
(i.e., text), without level graduation.

Archetype. For archetype comparison in identity pointers, we
observed significant effects in Preference (𝐹3,177 = 74.38, 𝑝 < .0001,
𝜂2
𝑃
= 0.56), Confidence (𝐹2.24,132.25 = 2.95, 𝑝 < .0001, 𝜂2

𝑃
= 0.05), Mental

Ease (𝐹3,177 = 9.77, 𝑝 < .0001, 𝜂2
𝑃
= 0.14), Target Visibility (𝐹1.57,92.51 =

147.07, 𝑝 < .0001, 𝜂2
𝑃

= 0.71), and Error in Count (𝐹2.09,123.38 = 3.62,
𝑝 < 0.05, 𝜂2

𝑃
= 0.06) with repeated measures ANOVA.

As shown in Figure 6 and revealed by post hoc pairwise t-tests
with Holm–Bonferroni correction, the general trend of identity
pointers follows its certain counterparts. For example, bound-
ary is still the top-performing archetype, similar to its single-
pointer version. It received significantly higher ratings than in-
ternal (𝑝 < .0001, Cohen’s 𝑑 = 1.23), external (𝑝 < .05, 𝑑 = 0.32),
and fill (𝑝 < .0001, 𝑑 = 1.40) in Preference; surpassed internal
(𝑝 < .005,𝑑 = 0.48) inMental Ease; exceed internal (𝑝 < .0001,𝑑 = 1.22)
and fill (𝑝 < .0001,𝑑 = 1.74) in Target Visibility; had lower error than
external (𝑝 < 0.1, 𝑑 = 0.3) in Error in Count. However, it received
significantly lower ratings in dn scenes, which feature densely
placed objects at near distances (Appendix B). This suggests that
multi-object annotation has different design considerations from a
single one.

external is still considered the second-best preferred option,
similarly, except for the df (Dense and Far) scene. It received signif-
icantly higher ratings than internal (𝑝 < .0001, Cohen’s 𝑑 = 1.17)
and fill (𝑝 < .0001, 𝑑 = 1.25) in Preference; also, had higher ratings
than internal (𝑝 < .1, 𝑑 = 0.35) and fill (𝑝 < .1, 𝑑 = 0.32) in Con-

fidence; received higher ratings compared to internal (𝑝 < .0001,
𝑑 = 0.62) and fill (𝑝 < .05, 𝑑 = 1.33) in Mental Ease; exceeded in-
ternal (𝑝 < .0001, 𝑑 = 1.34) and fill (𝑝 < .0001, 𝑑 = 1.76) in Target

Visibility; lastly, it have higher ratings (i.e., lower error) versus
internal (𝑝 < .05, 𝑑 = 0.34), boundary (𝑝 < .1, 𝑑 = 0.3), and fill
(𝑝 < .01, 𝑑 = 0.43) in Error in Count.

Signifier. Repeated measures ANOVA revealed significant effects
of visual signifier on Preference (𝐹2,118 = 4.27, 𝑝 < .05, 𝜂2

𝑃
= 0.07),

Confidence (𝐹2,118 = 3.30, 𝑝 < .05,𝜂2
𝑃
= 0.05),Mental Ease (𝐹2,118 = 11.07,

𝑝 < .0001, 𝜂2
𝑃
= 0.16), Duration (𝐹2,118 = 8.17, 𝑝 < .0005, 𝜂2

𝑃
= 0.12), and

Error in Count (𝐹2,118 = 3.34, 𝑝 < .05, 𝜂2
𝐺

= 0.05).
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Internal

External

Boundary

Fill

Figure 5: Study results for certain pointers in terms of Preference, Confidence, Mental Ease, Target Visibility, and Duration for

each archetype, scene, and their combinations. The error bars represent 95% confidence intervals. All participants answered

correctly on the counting task, so Error in Count is always 0 and excluded from the plot.
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Figure 6: Study results for identity pointers in terms of Preference, Confidence,Mental Ease, Target Visibility, Duration, and
Error in Count for each archetype, signifier scene, and their combinations. The error bars represent 95% confidence intervals.

For Preference, participants significantly favored color over
text (𝑝 < .05, 𝑑 = 0.26). Several participants [p1, p8, p10, p12, p22,
p57] noted that colors made it easier to distinguish targets and were
more immediately recognizable than text labels.

However, for Error in Count, none had lower error than color
(𝑝 < .1, 𝑑 = 0.29), with participants noting that “The same color is

easier to count.” [p43] due to visual consistency. text also surpassed
color (𝑝 < .0001, 𝑑 = 0.72) for counting accuracy. This superiority
also reflects in Mental Ease, where none had higher ratings than
color (𝑝 < .0001, 𝑑 = 0.61) and text (𝑝 < .05, 𝑑 = 0.28), and in Dura-

tion, where none required less time than color (𝑝 < .005, 𝑑 = 0.46)
and text (𝑝 < .005, 𝑑 = 0.46). Additionally, none showed higher
ratings in Confidence than color (𝑝 < .05, 𝑑 = 0.34).

These findings highlight a tradeoff: while color is preferred for
visual clarity and verbal selection, it may impair quick counting in
pointer recognition vs. more uniform signifiers (i.e., none).

4.8 Recommendations Based on Clustering

To summarize our findings across multiple metrics and reconcile
potential conflicts between subjective and objective evaluations,
similar to previous gesture research [21, 191], we applied K-means
clustering to each archetype × scene × signifier triad based on
metric scores. Given the observed divergence between subjective
metrics (such as Target Visibility vs objective error-related mea-
sures), we generated two separate sets of clusters using distinct
feature vectors. Across 50 random initializations, clustering results
were stable. All pairwise Adjusted Rand Index (ARI) values exceeded
0.95. The final model (yielding the lowest WCSS) resulted in 3 and
4 clusters for objective and subjective measures, respectively, with
consistent centroid positions across runs. The overall silhouette
coefficient was 0.66 and 0.52, indicating well-separated clusters.

The first clustering set contains objective performance measures,
including Duration and Error in Count. The second clustering set
focuses on subjective metrics: Preference, Confidence, Mental Ease,
and Target Visibility. For subjective clusters, we used the mean
cluster-level Preference score to establish a relative group ordering.

9
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Figure 7: archetype-signifier-scene Groups. (a) Clusters

based on object-level metrics. (b) Clusters organized by sub-

jective measures, with mean user preference displayed for

each group. The asterisk (*) indicates the recommended

best-performing group, demonstrating strong archetype-

signifier-scene synergy. These specific archetype-scene

pairs were selected to advance to Study 2, where we evaluate

level pointer visualizations.

For objective clusters, ordering was based on statistical test results
and the mean differences.

For subjective metrics, there was cluster separation between
fill archetype vs. the others, suggesting the former are perceived

to be less preferable. The fill and internal archetypes with sn
and sf scenes showed the largest shift between ordered groups, but
all other pairings shifted no more than one adjacent group.

Based on the clustering results and main findings from Study
1, we excluded the fill archetype from our follow-up experiment
on level visualizations. Specifically, we selected archetype-scene
combinations that appeared in the top-performing clusters of either
subjective or objective measures, and were not part of the lowest-
performing cluster in either group. Among the combinations that
fell into the second-tier cluster for both metrics, we included only
the boundary-dn pair, as it outperformed top conditions in multi-
ple measures, which are external-dn in Error in Count (𝑝 < .05)
and internal-far in Target Visibility (𝑝 < .1). Overall, we include
all scene conditions with external and boundary pointers
and the two scenes with further targets (SF and df) with internal
pointers for Experiment 2.

5 Online Experiment 2: Level Visualizations

The goal of our second online experiment is to examine how dif-
ferent scenes, archetypes, and signifiers influence visualization
effectiveness for level visualizations.

5.1 Preparation and Apparatus

This study utilizes the same four Gaussian splat captures for ren-
dering AR mock-up videos, and Qualtrics for study protocol.

For each change in visual signifier, we based our heuristic on
Steven’s power law [183] (𝜓 (𝐼 ) = 𝑘𝐼𝑎) to determine the intensity
and changes for color, opacity, and size signifiers. The exponents
𝑎 we used are 1.8, 1.7, and 1, respectively, while 𝑘 is fitted to main-
tain minimum visibility for each pointer within each scene, based
on previous visual research in transparency [7], saturation (for
color) [171], and size [185].

For each target variation, we assigned the most visible pointer
in the scene to the maximum value and the least visible to the min-
imum (as defined by the above-mentioned visibility consideration).
The intermediate pointer intensities (𝐼 ) were then linearly inter-
polated. As a result, variations with fewer targets exhibited more
pronounced visual differences between candidates. To account for
practical opacity levels of AR and smart glasses, we conducted a
small survey of the commercial optical see-through AR headsets
and glasses with recent tint and dimming technology regarding
their opacity level6, which revealed a range of 80-100%. Combined
with common legal safety standards for light-blocking glasses in
most countries and states (Category 3, 8%-18%)7, accordingly, we
set the upper bound of all visualizations’ opacity to 90%.

5.2 Design, Task, and Procedure

This study followed a similar format to our first online study but
differed in the visualization conditions and the task design. Specif-
ically, it introduced an additional identification task referenced
from the searching task in previous uncertainty visualization liter-
ature [39, 75, 160] where participants selected the targets labeled
by the pointers with most and least certainty levels in the mock-up
video scene using their mouse (Appendix A, Figure 10 B). They also
answered an added subjective question evaluating the Intuitiveness
and Logic of the uncertainty signifiers, which is commonly tested
for uncertainty visualization [18, 117].

The study was also a within-subject design, which was pre-
registered8 before deployment. The target number of users, based on
our power analysis to achieve 90% power for analyzing archetype,
signifier, and archetype × scene, was 40. The independent vari-
ables were archetype, signifier, and scene:
• 4 Scenes with sparse × far (sf), dense × far (df), sparse × near
(sn), and dense × near (dn) (Near scenes are only for external
and boundary).

• 3 Pointer Archetypes: external, internal, boundary
• 4 Signifiers: color, opacity, size, and text (Text is only for
External and Internal)

Similar to Study 1, for each archetype × signifier × scene triad,
we created 3 target configurations with varying numbers (3, 4,
or 5) and locations of targets to minimize participants’ learning
effect across trials. In total, we created 108 video variations. Each
participant was presented with one of the three target variations
for each video trial, for a total of 36 unique video trials, covering
all selected combinations of annotations archetype × signifier ×
scene for level visualizations.
6Opacity Level Survey: Magic Leap 2 (80-100%), Xreal One/One Pro (100%, near black
out), RayNeo Air 3S (99.6%), Snap Spectacles 5 using AlphaMicron’s E-Tint (84%).
7Sunglass standards and category information: ISO 12312-1 and ANSI Z80.3.
8The link to Experiment 2 pre-registration, revised during the review process to use
repeated measures ANOVA with sphericity tests, along with post hoc t-tests using
Holm–Bonferroni correction
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Each video trial yields the same dependent variables, including
Duration (S), Error in Count, Mental Ease, Target Visibility, and Pref-
erence, with the duration spanning from the onset of the video to
submitting the task. This study yields additional dependent vari-
ables, including:
• Error in Most: Absolute number of level difference from the cor-
rect most certain target to participant’s answer.

• Error in Least: Absolute number of level difference from the
correct least certain target.

• Intuitiveness / Logic: “How intuitive or easy was it to map the
visualization design to the system’s confidence level across the
candidate set?” (1 = Very Difficult, 7 = Very Easy)

5.3 Participants

We recruited 40 participants (ages 18 to 46, m=21.9, sd=5.4) via
mailing lists and word of mouth, with no returning participants
from the first experiment. 28 identified as women and 12 as men.
None of the participants reported being colorblind. All participants
provided informed consent and were compensated with a $15 Ama-
zon gift card. The study took less than one hour to complete.

5.4 Results for Level Pointers

We discuss the result for level pointers, where multiple targets in
the uncertainty set are annotated with either color, size, text, or
opacity with variable intensities.

Archetype. For archetype comparison, significant effects were
found across multiple measures using repeated measures ANOVA,
including Preference (𝐹2,78 = 10.91, 𝑝 < .0001, 𝜂2

𝐺
= 0.22), Intuitiveness

/ Logic (𝐹2,78 = 14.05, 𝑝 < .0001, 𝜂2
𝑃
= 0.27), Confidence (𝐹2,78 = 12.96,

𝑝 < .0001, 𝜂2
𝑃

= 0.3), Mental Ease (𝐹2,78 = 7.08, 𝑝 < .005, 𝜂2
𝑃

= 0.15),
Target Visibility (𝐹2,78 = 22.89, 𝑝 < .0001, 𝜂2

𝑃
= 0.37), Error in Count

(𝐹2,78 = 10.38, 𝑝 < .0001, 𝜂2
𝑃
= 0.21), and Error in Least (𝐹2,78 = 9.12,

𝑝 < .0005, 𝜂2
𝑃
= 0.19), but not Error in Most.

Overall, external received the highest ratings across multiple
measures, while boundary received the lowest. In Preference,
external surpassed both boundary (𝑝 < .0001, 𝑑 = 0.73) and in-
ternal (𝑝 < .001, 𝑑 = 0.60). In Intuitiveness / Logic, external sur-
passed both boundary (𝑝 < .0001, 𝑑 = 0.94) and internal (𝑝 < .05,
𝑑 = 0.37), while boundary received the lowest scores, lower than in-
ternal (𝑝 < .05, 𝑑 = 0.44). A similar trend is also observed in Confi-

dence, where external has higher ratings vs. boundary (𝑝 < .0001,
𝑑 = 0.90) and internal (𝑝 < .1, 𝑑 = 0.27), while internal surpassed
boundary (𝑝 < .005, 𝑑 = 0.58). For Mental Ease, boundary received
lower ratings compared to external (𝑝 < .001, 𝑑 = 0.63) and inter-
nal (𝑝 < .1, 𝑑 = 0.34).

Error-related measures further confirmed this observation. For
Error in Count, external (𝑝 < .0001, 𝑑 = 0.84) and internal (𝑝 < .1,
𝑑 = 0.29) were both lower than boundary, while external yielded
even lower error than internal (𝑝 < .05, 𝑑 = 0.4). Similarly, in Error

in Least, boundary pointers yielded higher error than both exter-
nal (𝑝 < .0005, 𝑑 = 0.67) and internal pointers (𝑝 < .01, 𝑑 = 0.50).

The only measures where boundary was not rated as the worst
is in Target Visibility, where internal pointers were rated low-
est, lower than both boundary (𝑝 < .005, 𝑑 = 0.54) and external

(𝑝 < .0001, 𝑑 = 0.99). Nevertheless, boundary was still lower than
external in visibility (𝑝 < .0005, 𝑑 = 0.63).

Overall, external pointers was the best. Then, internal was
advantaged over boundary in most measures except for target visi-
bility, whereas participants rated boundary as the worst archetype
across most measures. For example, “I strongly disliked the ‘border’

visualizations.” [p39] Compared to our results with certain and
identity pointers, boundary shows poor synergy with graded
visual signifiers. We believe this is due to its thinner visible area,
which limits the perceptibility of intensity-based visual changes.

Signifier. For signifier comparison, significant effects emerged
across all subjective measures and also objective Error in Count and
Error in Least.

Overall Preference showed significant effects (𝐹1.95,76.04 = 16.22,
𝑝 < .0001, 𝜂2

𝑃
= 0.29). opacity was rated lower than color (𝑝 < .0001,

𝑑 = 0.93), text (𝑝 < .0001, 𝑑 = 0.8), and size (𝑝 < .0001, 𝑑 = 1.01).
In Intuitiveness / Logic (𝐹3,117 = 37.53, 𝑝 < .0001, 𝜂2

𝑃
= 0.50), opac-

ity again performed worst, receiving significantly lower ratings
compared to size (𝑝 < .0001, 𝑑 = 1.01), color (𝑝 < .0005, 𝑑 = 0.72),
and text (𝑝 < .0001, 𝑑 = 0.99). color also rated below both size
(𝑝 < .005, 𝑑 = 0.53) and text (𝑝 < .0001, 𝑑 = 0.99). text was rated
the highest, even compared to size (𝑝 < .0005, 𝑑 = 0.66).

Similarly, in Confidence, repeated measures ANOVA revealed a
significant main effect (𝐹3,117 = 47.13, 𝑝 < .0001, 𝜂2

𝑃
= 0.55). Post hoc

comparisons showed that opacity was rated significantly lower
than size (𝑝 < .0001, 𝑑 = 1.18), color (𝑝 < .005, 𝑑 = 0.49), and text
(𝑝 < .0001, 𝑑 = 1.37), while color was also rated lower than size
(𝑝 < .0005, 𝑑 = 0.65) and text (𝑝 < .0001, 𝑑 = 1.27). text, again, was
rated the highest, even compared to size (𝑝 < .0001, 𝑑 = 0.79).

The same trend was also observed in Mental Ease (𝐹1.83,71.29 =

23.94, 𝑝 < .0001, 𝜂2
𝑃

= 0.38), text surpassed opacity (𝑝 < .0001,
𝑑 = 1.02), size (𝑝 < .1, 𝑑 = 0.28), and color (𝑝 < .005, 𝑑 = 0.55), while
size surpassed opacity (𝑝 < .0001, 𝑑 = 1.31) and color (𝑝 < .005,
𝑑 = 0.60). opacity was rated the lowest, even compared to color
(𝑝 < .0001, 𝑑 = 0.85).

Error-related behavioral measures further confirmed the same
trend as significant main effects were found in Error in count

(𝐹2.07,80.85 = 79.10, 𝑝 < .0001,𝜂2
𝑃
= 0.67) and Error in Least (𝐹3,117 = 45.55,

𝑝 < .0001, 𝜂2
𝑃
= 0.55), revealed by repeated measures ANOVA. In

Error in Count, text significantly yielded lower error versus opac-
ity (𝑝 < .0001, 𝑑 = 1.74), size (𝑝 < .0001, 𝑑 = 0.77), and color (𝑝 < .05,
𝑑 = 0.42), while size yielded lower error than opacity (𝑝 < .0001,
𝑑 = 1.46) and color (𝑝 < .05, 𝑑 = 0.46). opacity was rated the worst,
even compared to color (𝑝 < .0001, 𝑑 = 1.58). Similarly, in Error

in Least, text significantly yielded lower error versus opacity
(𝑝 < .0001, 𝑑 = 1.87), size (𝑝 < .05, 𝑑 = 0.39), and color (𝑝 < .0001,
𝑑 = 0.98), while size yielded lower error than opacity (𝑝 < .0001,
𝑑 = 1.17) and color (𝑝 < .0001, 𝑑 = 0.74). opacity was rated the
worst again, even compared to color (𝑝 < .0005, 𝑑 = 0.69).

Conversely, in Target Visibility (𝐹1.89,73.63 = 28.21, 𝑝 < .0001,
𝜂2
𝑃

= 0.42), participants found opacity superior, rating it clearer
than both text (𝑝 < .0001, 𝑑 = 0.93), size (𝑝 < .0001, 𝑑 = 1.02), and
color (𝑝 < .05, 𝑑 = 0.37), while color having higher ratings than
size (𝑝 < .0001, 𝑑 = 1.01) and text (𝑝 < .0001, 𝑑 = 0.84). Combined
with the results of the above other measures, these results indicate
trade-offs between occlusion and uncertainty recognition when
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Figure 8: Study results for level pointers in terms of Preference, Intuitiveness / Logic, Confidence,Mental Ease, Target Visibility,
Error in Count, Error in Most, Error in Least, and Duration, for each archetype, signifier scene, and their combinations. The

error bars represent 95% confidence intervals.

applying signifiers, with those that more clearly conveying uncer-
tainty yielding lower target visibility.

In sum, text and size emerged as the most effective signifiers in
terms of overall Preference, Intuitiveness / logic, Confidence, Mental

Ease, and error-related measures. Several participants mentioned
that for judging uncertainty level and performing clicking tasks,
they are “clear” [p5], “easier to compare” [p10]. Many mentioned they
would prefer the percentage text design for comparing levels [p2-4,
20-25, 28, 36, 39]; however, participants also mention their concern
over text’s occlusion “I found the percentages easy to understand

but distracting.” [p30]

Even though opacity and color are shown as disadvantaged
for their limited ability to show visual changes, often associated
with lower clarity. However, participants sometimes still prefer
them over text because they occluded the targets less. For example,
“Percentages [text] required less effort, but I did not like them as much.

My favorite visualization was the one that changed colors.” [p36]
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6 Discussion

6.1 Design Recommendations

In this section, we distill insights from our survey and experiments,
relate them to previous AR studies with uncertainty visualizations,
and discuss their implications for selecting archetypes, signifiers,
scenes, and their effective synergies.
Target visibility vs. pointer identifiability. In our findings, we
observed divergence between different Uncertain Pointers designs’
target visibility and identifiability. Designers should choose pointer
types and signifiers based on the cost of a missed coarse selection
and the visibility requirement over the targets.

In terms of pointer archetypes, although our surveyed prior
literature shows that internal and fill pointers are the most
common (65%), our results show they perform poorly when target
occlusion is considered. The two archetypes only outperform the
others in scenes with distant targets, where noticeability is more
important (shown by clustering in Figure 7). Therefore, they are
more suitable for input tasks with a critical mis-selection cost. For
instance, in fast-moving scenarios, such as driving, where missing a
target is more costly, prioritizing disambiguation via more obtrusive
pointers may be reasonable.
Choosing signifier and archetype based on task needs. In terms
of Signifiers, for level pointers, we observed a similar pattern to
that of the pointer archetype. Signifiers like text and size are more
easily perceived and rated highest for task confidence, preference,
and level determination. However, although they excel in most mea-
sures, size and text occlude targets and are even seen as distract-
ing for some participants. On the other hand, opacity preserves
visibility better but provides a weaker gradation of uncertainty
intensity. The observed preference for size over opacity contrasts
with Kunze et al. [101, 102], who found opacity to be preferred over
size in a video-based AR study of driving uncertainty. We attribute
this difference to task and visualization scale: Kunze et al. applied
larger overlays spanning broad roadway regions, where gradations
in opacity are more salient. In contrast, Uncertain Pointer visual-
izations are confined to smaller, pointer-based regions, which likely
reduces the perceptual effectiveness of opacity changes. Likewise,
the boundary pointer, though rated lowest for level clarity, of-
fered better performance in visibility-sensitive tasks where a layer
of visual identity cues is sufficient. For example, in AR-assisted
visual search tasks, the ideal signifier should minimize occlusion
of the candidate target without overdistraction, allowing users to
focus efficiently on recognizing the object; our evidence shows that
opacity or boundary would suffice.
Use of pointer archetype depends on conveyed uncertainty in-
formation. Across the three forms of Uncertain Pointers with
different levels of uncertainty information, certain, identity, and
level, preferences for archetypes such as boundary were not con-
sistent. For instance, the boundary pointer was the most preferred
archetype when visualizing a single, certain target across all four
scenes. However, its ranking dropped when used as an identity
pointer in multi-target scenarios, especially under dense or near-
target conditions, where separation among targets became harder
to distinguish. As a level pointer, it was among the least preferred,
likely because its limited visual area for encoding graded intensity
made it less effective at conveying confidence.

Uniform pointer for accurate coarse selection.We initially in-
cluded the none-signifier pointer as a baseline within the identity
pointer category. Although color and text-based identity pointers
can support direct disambiguation, the none condition produced
significantly better counting accuracy. This suggests that for re-
liable coarse selection under high input uncertainty, a uniform
visualization without identity changes may be more suitable.

6.2 Additional Example Use

Besides on-the-go target selection and query over distant or densely-
packed objects, as showcased in our teaser figure and introduction,
we provide additional example uses of Uncertain Pointers in AR.
Facilitate Communication in Human Robot Interaction. Am-
biguity in object retrieval or target location is a common chal-
lenge in robot perception and command understanding [145] for
human-robot interaction (HRI). By augmenting existing HRI dis-
ambiguation techniques, Uncertain Pointers can serve as a visual
communication layer for ambiguity-aware robots, helping them
convey uncertainty back to the user. For instance, robots could use
Uncertain Pointers to visually present multiple candidate locations
when unsure (Figure 9), allowing users to resolve the ambiguity
via additional input. Similarly, level pointers could signal the sys-
tem’s confidence before the robot commits to costly or irreversible
actions. This not only enhances transparency but also fosters more
efficient and collaborative interaction between humans and robots.
Composability Beyond the Presented Pointer Space.While our
evaluation separates level from identity and certain pointers,
Uncertain Pointers is not limited to these categories in isolation.
In practice, these strategies can be combined when the scenario or
target complexity calls for it. For example, as shown in Figure 9C,
a boundary-opacity pointer (encoding system confidence) can
be augmented with text labels to support disambiguation. This
combined approach allows users to both interpret confidence dis-
tribution and quickly disambiguate individual targets, enhancing
clarity and interaction efficiency. Another example is using a cer-
tain pointer for coarse selection and, upon initial input, displaying
candidate target sets with level or identity pointers.

7 Limitations and Future Work

7.1 Video-Based Online Study

Our work is the first to identify and systematically explore how
uncertainty visualization can be incorporated into situated, object-
based pointer design. Our experiments focused on the perception
and recognition of different Uncertain Pointer designs; however, be-
cause we used a screen-based video setup, our study shares several
limitations common to prior video-based AR uncertainty visualiza-
tion research [101, 102]. Below, we outline factors that may cause
discrepancies when translating our findings to wearable AR use.
Specifically, we consider differences in motion, field of view, light-
ing, and depth cues in wearable stereoscopic displays.
Motion.We simulated walking-in-place motion by applying 2 Hz
6-DoF noise to the camera path [68]. In real use, users may experi-
ence translation and can move their bodies more freely, which may
reduce overall pointer legibility. We expect the general trends and
tradeoffs among pointer and archetype designs to hold. However,
for cases with extreme motion, designers might prioritize pointer
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Figure 9: Additional example use cases of Uncertain Pointers in AR-HRI. (A–C) A user tells the robot to put the plant beside the

pot. The system detects multiple valid placements due to linguistic ambiguity in “beside the pot” and uses boundary pointers

with text labels to show them, allowing fast user disambiguation. (D–F) A user with full hands uses gaze as an auxiliary input

to ask the robot to fetch tools from a drawer. The system displays level pointers before action, and the largest pointer points

to the wrong one. The user notices the mismatch via this feedforward and adjusts their gaze to clarify intent.

legibility over real-world visibility, in which case fill might be a
more suitable option despite occluding details of real-world targets.
Field of View. Lightweight AR devices often have displays with a
limited field of view (FoV). Our experiments assume that all candi-
date targets are within the user’s sight and the display’s FoV. This
assumption aligns well with gaze- and pointing-based selection,
where users’ attention is likely centered in the FoV. However, for
other modalities (e.g., voice queries), target candidates may be far
apart and outside the display’s FoV, or even out of users’ sight en-
tirely. Future work may explore out-of-view cues [149] to support
disambiguation for off-screen targets.
Lighting. In terms of lighting, our results generalize to virtual
reality and passthrough AR experiences. However, with optical see-
through AR glasses, users encounter variable lighting conditions. A
survey of commercial AR glasses (Section 5.1) revealed an opacity
range of 80–100% for most devices. Accordingly, we capped opacity
at 90% in Study 2. Bright ambient lighting and reflections in the
real world reduce contrast and perceived brightness of Uncertain
Pointers, worsening the visibility of color and opacity signifiers.
This will likely make the advantages of text and size we observed
in Study 2 even more pronounced relative to color and opacity
signifiers, for communicating uncertainty levels.
Depth Cues. The apparent size of Uncertain Pointers changes lin-
early with viewing distance [69]. To account for this, with our size
signifier, we ensure the relative size (i.e., pixel) is large and clearly
visible on our two scenes with sparse targets, utilizing a power
function [183]. This approach should generalize to 3D AR. How-
ever, when targets span a wide depth range, an even larger step size
between levels may be needed to compensate for depth’s influence
on perceived size.

7.2 Visualization Design

Our study focused on disambiguation among 3–5 candidate tar-
gets, reflecting the ideal noticeable visual changes (∼20%) of most
signifiers [7, 171, 185]. However, this does not imply that Uncertain
Pointers is only restricted to small candidate sets. For larger sets,
Uncertain Pointers can still be used. For instance, using a none
identity pointer to indicate all candidate targets, and applying an ad-
ditional signifier (e.g., level or size) to emphasize the most probable
one, users can still disambiguate effectively through pointing-based
input. This approach trades off full uncertainty transparency, but
future work can consider multi-level hierarchies by clustering tar-
gets and applying leveled variations in signifiers to each cluster or
applying more granular and continuous change (i.e., more than 5
levels) to the entire candidate set. Additionally, our choice of color
(i.e., green) is based on its preattentive properties and on prior AR
work examining contrast against typical backgrounds [52, 127]. Fu-
ture work could investigate adaptive color adjustments to mitigate
reduced visibility in specific environments (e.g., forested scenes) by
using alternative preattentive color choices.
7.3 Coverage and Completeness

Systematic Review. Our survey aimed to explore the pointer space
of Uncertain Pointer by identifying visual signifiers and pointer
archetypes commonly used in prior work. A limitation of this ap-
proach lies in our chosen venues and query terms; an exhaustive
categorization would require surveying an even broader range of
publication venues, such as the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) to consider uncertain sce-
narios beyond our current focus, includingmulti-robot specification
(e.g., [22]) or IEEE Pacific Visualization Symposium (PacificVis) to
incoporate even more uncertainty visualization designs (e.g., [81]).
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Pointer Space. The presented pointer space is not exhaustive. Al-
though we have coverage of 82% of the signifiers from the prior
work we surveyed, not all signifiers can be described using our
current pointer space (e.g., texture or orientation). Additionally, fu-
ture work could explore specific grammars [204] tailored to object-
pointing design with uncertainty information to improve Uncertain
Pointers’ generative power [10, 11].

7.4 Uncertain Pointers with future VLM.

With recent advances in VLMs, they will likely be integrated into
more AR glasses to help resolve uncertain queries. While a stronger
reasoning capability may reduce the need for Uncertain Pointers
in some cases (e.g., Figure 9D-F, where a VLM could infer user
task and select the right tool they need), other uncertainty sources
remain difficult to eliminate, such as linguistic ambiguity [200] or
cases requiring knowledge of a user’s inherent history or intent
(e.g., which traffic sign a user has not learned in Figure 1A-B). In
these situations, Uncertain Pointers are always beneficial.

As VLMs become better at interpreting complex actions (e.g.,
through demonstration by direct manipulation of images [120]), fu-
ture work on Uncertain Pointer could also extend beyond 3D object
selection to preview affordances and possible actions in physical or
virtual environments with uncertainty cues (e.g., in combination
with [133] or [197]). This would provide feedforward support for
even more complex task and preview action possibilities.

8 Conclusion

We investigated situated feedforward visualizations in AR that an-
notate multiple real-world objects to represent system uncertainty
and support disambiguation by combining pointer designs with
existing visualization cues. Through a systematic literature review
and two online studies, we analyzed 25 visualization designs across
spatial variables. Our findings reveal key trade-offs in how different
pointer placements and visual encodings affect user confidence,
target visibility, mental load, and more. These insights provide
novel insights for designing future ambiguity-aware AR systems
for ubiquitous, everyday use.
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A Experiment Interface Supplementary

A

B

C
Figure 10: Study interfaces for collecting user response, including the ones for (A) Counting task (Study 1 & 2), (B) Clicking task

(Study 2 only), and (C) Subjective ratings (Study 1 & 2).
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B Experiment 1 Statistic Supplementary (archetype x scene)

Meandiff = group1 - group2

Table 2: t-test (Holm-Bonferroni-corrected) Result for Confidence

Confidence
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense < Bound x Near -0.4758 -0.566 0.0058
Bound x Dense < Ex x Dense -0.4308 -0.572 0.0049
Bound x Far > Fill x Dense 0.5567 0.537 0.0122
Bound x Near > Fill x Dense 0.6575 0.651 0.0006
Ex x Dense > Fill x Dense 0.6125 0.664 0.0004
Ex x Near > Fill x Dense 0.5269 0.517 0.0202
Fill x Dense < Fill x Far -0.5808 -0.492 0.0373
Fill x Dense < In x Dense -0.4808 -0.496 0.0344

Table 3: t-test (Holm-Bonferroni-corrected) Result for Duration

Duration
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm
In x Near < In x Sparse -0.9363 -0.502 0.0346
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Table 4: t-test (Holm-Bonferroni-corrected) Result for Mental Ease

Mental Ease
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense < Bound x Far -0.9475 -0.685 0.0002
Bound x Dense < Bound x Near -1.2925 -0.8 0
Bound x Dense < Bound x Sparse -0.9442 -0.6 0.002
Bound x Dense < Ex x Dense -0.9825 -0.825 0
Bound x Dense < Ex x Near -1.0703 -0.817 0
Bound x Dense < Ex x Sparse -0.9508 -0.575 0.0037
Bound x Dense < Fill x Far -1.1058 -0.732 0
Bound x Dense < Fill x Near -0.835 -0.547 0.0073
Bound x Dense < Fill x Sparse -1.0217 -0.578 0.0034
Bound x Dense < In x Near -0.7358 -0.548 0.0072
Bound x Far > Fill x Dense 1.0192 0.801 0
Bound x Far > In x Dense 0.4383 0.471 0.0466
Bound x Near > Ex x Far 0.6672 0.571 0.004
Bound x Near > Fill x Dense 1.3642 0.992 0
Bound x Near > In x Dense 0.7833 0.734 0
Bound x Near > In x Far 0.7517 0.655 0.0004
Bound x Near > In x Near 0.5567 0.567 0.0044
Bound x Near > In x Sparse 0.9683 0.752 0
Bound x Sparse > Fill x Dense 1.0158 0.776 0
Bound x Sparse > In x Sparse 0.62 0.563 0.0048
Ex x Dense > Fill x Dense 1.0542 0.947 0
Ex x Dense > In x Dense 0.4733 0.602 0.0019
Ex x Dense > In x Sparse 0.6583 0.489 0.0301
Ex x Far > Fill x Dense 0.6969 0.501 0.0228
Ex x Near > Fill x Dense 1.1419 0.906 0
Ex x Near > In x Dense 0.5611 0.585 0.0029
Ex x Near > In x Sparse 0.7461 0.598 0.0021
Ex x Sparse > Fill x Dense 1.0225 0.783 0
Ex x Sparse > In x Sparse 0.6267 0.564 0.0048
Fill x Dense < Fill x Far -1.1775 -0.895 0
Fill x Dense < Fill x Near -0.9067 -0.582 0.0031
Fill x Dense < Fill x Sparse -1.0933 -0.687 0.0002
Fill x Dense < In x Dense -0.5808 -0.491 0.0295
Fill x Dense < In x Near -0.8075 -0.692 0.0002
Fill x Far > In x Dense 0.5967 0.58 0.0033
Fill x Far > In x Far 0.565 0.515 0.0164
Fill x Far > In x Sparse 0.7817 0.52 0.0146
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Table 5: t-test (Holm-Bonferroni-corrected) Result for Target Visibility (1)

Target Visibility
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense > Fill x Dense 2.8258 1.423 0
Bound x Dense > Fill x Far 2.5142 1.26 0
Bound x Dense > Fill x Near 2.7217 1.148 0
Bound x Dense > Fill x Sparse 2.6 1.22 0
Bound x Dense > In x Dense 0.9131 0.628 0.0005
Bound x Dense > In x Near 2.5792 1.146 0
Bound x Far > Ex x Far 0.4953 0.496 0.0149
Bound x Far > Fill x Dense 2.9675 1.45 0
Bound x Far > Fill x Far 2.6558 1.267 0
Bound x Far > Fill x Near 2.8633 1.229 0
Bound x Far > Fill x Sparse 2.7417 1.263 0
Bound x Far > In x Dense 1.0547 0.655 0.0002
Bound x Far > In x Far 0.7653 0.595 0.0011
Bound x Far > In x Near 2.7208 1.281 0
Bound x Near > Ex x Far 0.8278 0.799 0
Bound x Near > Ex x Sparse 0.4661 0.476 0.0242
Bound x Near > Fill x Dense 3.3 1.718 0
Bound x Near > Fill x Far 2.9883 1.479 0
Bound x Near > Fill x Near 3.1958 1.423 0
Bound x Near > Fill x Sparse 3.0742 1.453 0
Bound x Near > In x Dense 1.3872 0.937 0
Bound x Near > In x Far 1.0978 0.809 0
Bound x Near > In x Near 3.0533 1.553 0
Bound x Near > In x Sparse 0.895 0.726 0
Bound x Sparse > Fill x Dense 2.8683 1.73 0
Bound x Sparse > Fill x Far 2.5567 1.244 0
Bound x Sparse > Fill x Near 2.7642 1.321 0
Bound x Sparse > Fill x Sparse 2.6425 1.451 0
Bound x Sparse > In x Dense 0.9556 0.762 0
Bound x Sparse > In x Far 0.6661 0.467 0.0297
Bound x Sparse > In x Near 2.6217 1.37 0
Ex x Dense > Ex x Far 0.4939 0.454 0.0386
Ex x Dense > Fill x Dense 2.9661 1.571 0
Ex x Dense > Fill x Far 2.6544 1.341 0
Ex x Dense > Fill x Near 2.8619 1.301 0
Ex x Dense > Fill x Sparse 2.7403 1.314 0
Ex x Dense > In x Dense 1.0533 0.808 0
Ex x Dense > In x Far 0.7639 0.576 0.0019
Ex x Dense > In x Near 2.7194 1.384 0
Ex x Far < Ex x Near -0.7533 -0.714 0
Ex x Far > Fill x Dense 2.4722 1.395 0
Ex x Far > Fill x Far 2.1606 1.088 0
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Table 6: t-test (Holm-Bonferroni-corrected) Result for Target Visibility (2)

Target Visibility
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm
Ex x Far > Fill x Near 2.3681 1.136 0
Ex x Far > Fill x Sparse 2.2464 1.172 0
Ex x Far > In x Near 2.2256 1.195 0
Ex x Near > Ex x Sparse 0.3917 0.445 0.0473
Ex x Near > Fill x Dense 3.2256 1.742 0
Ex x Near > Fill x Far 2.9139 1.492 0
Ex x Near > Fill x Near 3.1214 1.498 0
Ex x Near > Fill x Sparse 2.9997 1.427 0
Ex x Near > In x Dense 1.3128 0.911 0
Ex x Near > In x Far 1.0233 0.825 0
Ex x Near > In x Near 2.9789 1.595 0
Ex x Near > In x Sparse 0.8206 0.698 0.0001
Ex x Sparse > Fill x Dense 2.8339 1.567 0
Ex x Sparse > Fill x Far 2.5222 1.38 0
Ex x Sparse > Fill x Near 2.7297 1.372 0
Ex x Sparse > Fill x Sparse 2.6081 1.34 0
Ex x Sparse > In x Dense 0.9211 0.759 0
Ex x Sparse > In x Far 0.6317 0.465 0.0303
Ex x Sparse > In x Near 2.5872 1.38 0
Fill x Dense < In x Dense -1.9128 -1.344 0
Fill x Dense < In x Far -2.2022 -1.269 0
Fill x Dense < In x Sparse -2.405 -1.348 0
Fill x Far < In x Dense -1.6011 -0.867 0
Fill x Far < In x Far -1.8906 -0.954 0
Fill x Far < In x Sparse -2.0933 -1.001 0
Fill x Near < In x Dense -1.8086 -0.957 0
Fill x Near < In x Far -2.0981 -1.047 0
Fill x Near < In x Sparse -2.3008 -1.092 0
Fill x Sparse < In x Dense -1.6869 -1.098 0
Fill x Sparse < In x Far -1.9764 -1.132 0
Fill x Sparse < In x Sparse -2.1792 -1.105 0
In x Dense > In x Near 1.6661 0.979 0
In x Far > In x Near 1.9556 1.125 0
In x Near < In x Sparse -2.1583 -1.129 0
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Table 7: t-test (Holm-Bonferroni-corrected) Result for Preference (1)

Preference
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense < Bound x Far -1.0292 -0.603 0.001
Bound x Dense < Bound x Near -1.5317 -1.016 0
Bound x Dense < Bound x Sparse -1.1667 -0.68 0.0001
Bound x Dense < Ex x Dense -1.0047 -0.676 0.0001
Bound x Dense < Ex x Near -1.0481 -0.742 0
Bound x Dense < Ex x Sparse -0.7714 -0.503 0.0116
Bound x Dense > Fill x Dense 1.2417 0.738 0
Bound x Dense > Fill x Near 1.0475 0.487 0.0162
Bound x Dense > In x Near 1.1814 0.622 0.0006
Bound x Far > Ex x Far 1.1133 0.778 0
Bound x Far > Fill x Dense 2.2708 1.221 0
Bound x Far > Fill x Far 1.3558 0.738 0
Bound x Far > Fill x Near 2.0767 0.951 0
Bound x Far > Fill x Sparse 1.8958 0.865 0
Bound x Far > In x Dense 1.0833 0.609 0.0008
Bound x Far > In x Far 0.8911 0.568 0.0023
Bound x Far > In x Near 2.2106 1.138 0
Bound x Far > In x Sparse 1.2394 0.756 0
Bound x Near > Ex x Dense 0.5269 0.471 0.0229
Bound x Near > Ex x Far 1.6158 1.115 0
Bound x Near > Ex x Sparse 0.7603 0.643 0.0004
Bound x Near > Fill x Dense 2.7733 1.787 0
Bound x Near > Fill x Far 1.8583 1.064 0
Bound x Near > Fill x Near 2.5792 1.289 0
Bound x Near > Fill x Sparse 2.3983 1.287 0
Bound x Near > In x Dense 1.5858 1.039 0
Bound x Near > In x Far 1.3936 0.839 0
Bound x Near > In x Near 2.7131 1.52 0
Bound x Near > In x Sparse 1.7419 1.091 0
Bound x Sparse > Ex x Far 1.2508 0.859 0
Bound x Sparse > Fill x Dense 2.4083 1.338 0
Bound x Sparse > Fill x Far 1.4933 0.748 0
Bound x Sparse > Fill x Near 2.2142 1.156 0
Bound x Sparse > Fill x Sparse 2.0333 1.149 0
Bound x Sparse > In x Dense 1.2208 0.799 0
Bound x Sparse > In x Far 1.0286 0.739 0
Bound x Sparse > In x Near 2.3481 1.429 0
Bound x Sparse > In x Sparse 1.3769 0.804 0
Ex x Dense > Ex x Far 1.0889 0.945 0
Ex x Dense > Fill x Dense 2.2464 1.276 0
Ex x Dense > Fill x Far 1.3314 0.815 0
Ex x Dense > Fill x Near 2.0522 1.132 0
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Table 8: t-test (Holm-Bonferroni-corrected) Result for Preference (2)

Preference
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Ex x Dense > Fill x Sparse 1.8714 1.038 0
Ex x Dense > In x Dense 1.0589 0.89 0
Ex x Dense > In x Far 0.8667 0.706 0.0001
Ex x Dense > In x Near 2.1861 1.455 0
Ex x Dense > In x Sparse 1.215 0.882 0
Ex x Far < Ex x Near -1.1322 -0.985 0
Ex x Far < Ex x Sparse -0.8556 -0.768 0
Ex x Far > Fill x Dense 1.1575 0.65 0.0003
Ex x Far > Fill x Near 0.9633 0.531 0.0059
Ex x Far > In x Near 1.0972 0.703 0.0001
Ex x Near > Fill x Dense 2.2897 1.396 0
Ex x Near > Fill x Far 1.3747 0.826 0
Ex x Near > Fill x Near 2.0956 1.099 0
Ex x Near > Fill x Sparse 1.9147 0.993 0
Ex x Near > In x Dense 1.1022 0.776 0
Ex x Near > In x Far 0.91 0.723 0
Ex x Near > In x Near 2.2294 1.424 0
Ex x Near > In x Sparse 1.2583 0.962 0
Ex x Sparse > Fill x Dense 2.0131 1.223 0
Ex x Sparse > Fill x Far 1.0981 0.728 0
Ex x Sparse > Fill x Near 1.8189 1.025 0
Ex x Sparse > Fill x Sparse 1.6381 0.971 0
Ex x Sparse > In x Dense 0.8256 0.576 0.0019
Ex x Sparse > In x Far 0.6333 0.5 0.0122
Ex x Sparse > In x Near 1.9528 1.358 0
Ex x Sparse > In x Sparse 0.9817 0.766 0
Fill x Dense < Fill x Far -0.915 -0.541 0.0047
Fill x Dense < In x Dense -1.1875 -0.635 0.0004
Fill x Dense < In x Far -1.3797 -0.735 0
Fill x Dense < In x Sparse -1.0314 -0.617 0.0007
Fill x Far > Fill x Near 0.7208 0.485 0.0165
Fill x Far > In x Near 0.8547 0.587 0.0015
Fill x Near < In x Dense -0.9933 -0.523 0.0071
Fill x Near < In x Far -1.1856 -0.582 0.0017
Fill x Sparse < In x Dense -0.8125 -0.445 0.0421
Fill x Sparse < In x Far -1.0047 -0.491 0.0152
In x Dense > In x Near 1.1272 0.723 0
In x Far > In x Near 1.3194 0.801 0
In x Near < In x Sparse -0.9711 -0.643 0.0004
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C Experiment 2 Statistic Supplementary (archetype x scene)

Meandiff = group1 - group2

Table 9: t-test (Holm-Bonferroni-corrected) Result for Confidence

Confidence
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense < Ex x Dense -0.695 -0.61 0.0155
Bound x Dense < Ex x Near -0.6931 -0.594 0.0195
Bound x Far < Bound x Near -0.6583 -0.608 0.0155
Bound x Far < Ex x Dense -0.9792 -0.974 0
Bound x Far < Ex x Far -0.7317 -0.757 0.001
Bound x Far < Ex x Near -0.9773 -0.919 0
Bound x Far < Ex x Sparse -0.721 -0.686 0.0038
Bound x Far < In x Far -0.6204 -0.741 0.0014
Bound x Far < In x Sparse -0.8023 -0.669 0.0052

Bound x Sparse < Ex x Dense -0.7267 -0.707 0.0026
Bound x Sparse < Ex x Near -0.7248 -0.767 0.0009

Table 10: t-test (Holm-Bonferroni-corrected) Result for Intuitiveness / Logic

Intuitiveness / Logic
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense < Ex x Dense -0.753 -0.721 0.0027
Bound x Dense < Ex x Near -0.6145 -0.599 0.0222
Bound x Far < Ex x Dense -0.9855 -0.791 0.0007
Bound x Far < Ex x Far -0.7312 -0.707 0.0033
Bound x Far < Ex x Near -0.847 -0.688 0.0047
Bound x Far < Ex x Sparse -0.7684 -0.727 0.0025
Bound x Far < In x Far -0.5929 -0.555 0.0478

Bound x Sparse < Ex x Dense -0.75 -0.717 0.0028
Bound x Sparse < Ex x Near -0.6115 -0.615 0.0175
Bound x Sparse < Ex x Sparse -0.5329 -0.609 0.0192

Table 11: t-test (Holm-Bonferroni-corrected) Result for Mental Ease

Mental Ease
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense < Ex x Dense -0.5904 -0.553 0.048
Bound x Far < Ex x Dense -0.9471 -0.834 0.0002
Bound x Far < Ex x Far -0.5733 -0.554 0.048
Bound x Far < Ex x Near -0.9058 -0.792 0.0005
Bound x Far < Ex x Sparse -0.7696 -0.636 0.0109
Bound x Far < In x Sparse -0.8308 -0.636 0.0109
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Table 12: t-test (Holm-Bonferroni-corrected) Result for Target Visibility

Target Visibility
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense < Bound x Near -0.6033 -0.538 0.0449
Bound x Dense < Ex x Dense -0.835 -0.992 0
Bound x Dense < Ex x Near -0.8719 -0.711 0.0021
Bound x Far < Ex x Dense -0.8117 -0.78 0.0006
Bound x Far < Ex x Near -0.8485 -0.745 0.0011
Bound x Near > In x Far 0.9933 0.706 0.0022
Bound x Near > In x Sparse 0.8915 0.611 0.0128
Bound x Sparse < Ex x Dense -0.7333 -0.613 0.0126
Bound x Sparse < Ex x Near -0.7702 -0.596 0.0163
Ex x Dense > Ex x Far 0.8531 0.832 0.0002
Ex x Dense > In x Far 1.225 0.99 0
Ex x Dense > In x Sparse 1.1231 0.924 0
Ex x Far < Ex x Near -0.89 -0.82 0.0003
Ex x Near > In x Far 1.2619 1.034 0
Ex x Near > In x Sparse 1.16 0.873 0.0001
Ex x Sparse > In x Far 0.8719 0.738 0.0013
Ex x Sparse > In x Sparse 0.77 0.658 0.0055

Table 13: t-test (Holm-Bonferroni-corrected) Result for Preference

Preference
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense < Bound x Near -0.84 -0.637 0.0086
Bound x Dense < Ex x Dense -1.2329 -0.971 0
Bound x Dense < Ex x Near -0.906 -0.636 0.0086
Bound x Far < Bound x Near -1.1408 -0.941 0
Bound x Far < Ex x Dense -1.5338 -1.05 0
Bound x Far < Ex x Far -0.8381 -0.626 0.0098
Bound x Far < Ex x Near -1.2069 -0.916 0
Bound x Far < Ex x Sparse -0.8675 -0.742 0.0012
Bound x Near > Bound x Sparse 0.7283 0.671 0.0049
Bound x Sparse < Ex x Dense -1.1212 -0.868 0.0001
Bound x Sparse < Ex x Near -0.7944 -0.623 0.0101
Ex x Dense > Ex x Far 0.6956 0.663 0.0055
Ex x Dense > Ex x Sparse 0.6663 0.639 0.0084
Ex x Dense > In x Far 0.9581 0.88 0.0001
Ex x Dense > In x Sparse 0.8362 0.745 0.0012
Ex x Near > In x Far 0.6313 0.592 0.0176
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Table 14: t-test (Holm-Bonferroni-corrected) Result for Error in Least

Error in Least
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense > Bound x Sparse 0.3782 0.884 0.0001
Bound x Dense > Ex x Dense 0.3974 1.093 0
Bound x Dense > Ex x Near 0.3066 0.626 0.0124
Bound x Dense > Ex x Sparse 0.4231 1.1 0
Bound x Dense > In x Sparse 0.3803 0.815 0.0004
Bound x Far > Bound x Sparse 0.2863 0.578 0.0281
Bound x Far > Ex x Dense 0.3056 0.755 0.0013
Bound x Far > Ex x Sparse 0.3312 0.63 0.0119

Bound x Sparse < Ex x Far -0.2585 -0.749 0.0014
Bound x Sparse < In x Far -0.156 -0.627 0.0124
Ex x Dense < Ex x Far -0.2778 -0.735 0.0018
Ex x Dense < In x Far -0.1752 -0.555 0.0412
Ex x Far > Ex x Sparse 0.3034 0.967 0
Ex x Far > In x Sparse 0.2607 0.632 0.0119

Ex x Sparse < In x Far -0.2009 -0.696 0.0037
Ex x Near > In x Far 0.6313 0.592 0.0176

Table 15: t-test (Holm-Bonferroni-corrected) Result for Error in Count

Error in Count
group_1 sign group_2 mean_diff_(1_minus_2) cohen_dz p_holm

Bound x Dense > Bound x Sparse 0.2583 0.843 0.0002
Bound x Dense > Ex x Dense 0.375 1.423 0
Bound x Dense > Ex x Near 0.2312 0.857 0.0001
Bound x Dense > Ex x Sparse 0.2625 0.847 0.0002
Bound x Dense > In x Sparse 0.2188 0.615 0.0126
Bound x Far > Bound x Sparse 0.175 0.62 0.0118
Bound x Far > Ex x Dense 0.2917 1.064 0
Bound x Far > Ex x Near 0.1479 0.555 0.0321
Bound x Far > Ex x Sparse 0.1792 0.594 0.0169
Bound x Near > Ex x Dense 0.2667 0.767 0.0008
Bound x Sparse > Ex x Dense 0.1167 0.604 0.015
Bound x Sparse < Ex x Far -0.1583 -0.731 0.0015
Ex x Dense < Ex x Far -0.275 -1.739 0
Ex x Dense < Ex x Near -0.1438 -0.736 0.0014
Ex x Dense < Ex x Sparse -0.1125 -0.575 0.0232
Ex x Dense < In x Far -0.2438 -1.398 0
Ex x Dense < In x Sparse -0.1562 -0.545 0.0374
Ex x Far > Ex x Near 0.1312 0.599 0.0159
Ex x Far > Ex x Sparse 0.1625 0.685 0.0035
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